共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal and annual variation in nitrogen mineralization and nitrification along an elevational gradient in New Mexico 总被引:5,自引:4,他引:5
Patterns and amounts of nitrogen loss from disturbed ecosystems vary widely. The mineralization of organic nitrogen to ammonium and then nitrification to nitrate are important processes regulating nitrogen cycling rates and nitrogen losses. Nitrification is a significant process because of the production of the nitrate anion which is easily leached or denitrified. Most studies of these processes do not evaluate their seasonal and yearly variations. This study demonstrates that marked seasonal and yearly variations can occur in these processes in different ecosystems and suggests that nitrogen loss or other system properties correlated with one arbitrarily selected collection can be misleading. Spruce-fir and ponderosa pine ecosystems demonstrated little actual orpotential nitrification. Aspen and mixed conifer ecosystems demonstrated distinct seasonal patterns with increased rates of mineralization and nitrification during spring and summer months and a precipitous decline in both rates coincident with autumn foliage litterfall.The relative availability of soil nitrogen along with the amount of nitrogen circulating annually in litterfall prior to disturbance are useful predictors of the potential for nitrate production and loss following disturbance. However, other controls, including regulation by organic compounds, appear important in determining seasonal and annual variation in actual nitrification rates. 相似文献
2.
Soil N mineralization and nitrification in relation to nitrogen solution chemistry in a small forested watershed 总被引:5,自引:1,他引:5
Spatial variations in soil processes regulating mineral N losses to streams were studied in a small watershed near Toronto, Ontario. Annual net N mineralization in the 0–8 cm soil was measured in adjacent upland and riparian forest stands using in situ soil incubations from April 1985 to 1987. Mean annual rates of soil N mineralization and nitrification were higher in a maple soil (93.8 and 87.0 kg.ha–1) than in a pine soil (23.3 and 8.2 kg.ha–1 ). Very low mean rates of mineralization (3.3 kg.ha–1) and nitrification (3.4 kg.ha–1) were found in a riparian hemlock stand. Average NO3-N concentrations in soil solutions were 0.3–1.0 mg.L–1 in the maple stand and >0.06mg.L–1 in the pine stand. Concentrations of NO3–N in shallow ground water and stream water were 3–4× greater in a maple subwatershed than in a pine subwatershed. Rapid N uptake by vegetation was an important mechanism reducing solution losses of NO3–N in the maple stand. Low rates of nitrification were mainly responsible for negligible NO3–N solution losses in the pine stand. 相似文献
3.
Owen Jeffrey S. Wang Ming Kuang Sun Hai Lin King Hen Biau Wang Chung Ho Chuang Chin Fang 《Plant and Soil》2003,251(1):167-174
We used the buried bag incubation method to study temporal patterns of net N mineralization and net nitrification in soils at Ta-Ta-Chia forest in central Taiwan. The site included a grassland zone, (dominant vegetation consists of Yushania niitakayamensis and Miscanthus transmorrisonensis Hayata) and a forest zone (Tsuga chinensis var. formosana and Yushania niitakamensis). In the grassland, soil concentration NH4
+ in the organic horizon (0.1–0.2 m) ranged from 1.0 to 12.4 mg N kg–1 soil and that of NO3
– varied from 0.2 to 2.1 mg N kg–1 soil. In the forest zone, NH4
+ concentration was between 2.8 and 25.0 mg N kg–1 soil and NO3
–varied from 0.2 to 1.3 mg N kg–1 soil. There were lower soil NH4
+ concentrations during the summer than other seasons. Net N mineralization was higher during the summer while net nitrification rates did not show a distinct seasonal pattern. In the grassland, net N mineralization and net nitrification rates were between –0.1 and 0.24 and from –0.04 to 0.04 mg N kg–1 soil day–1, respectively. In the forest zone, net N mineralization rates were between –0.03 and 0.45 mg N kg–1 soil day–1 and net nitrification rates were between –0.01 and 0.03 mg N kg–1 soil day–1. These differences likely result from differing vegetation communities (C3 versus C4 plant type) and soil characteristics. 相似文献
4.
Christopher Neill 《Biogeochemistry》1995,30(3):171-189
Flooding can be an important control of nitrogen (N) biogeochemistry in wetland ecosystems. In North American prairie marshes, spring flooding is a dominant feature of the physical environment that increases emergent plant production and could influence N cycling. I investigated how spring flooding affects N availability and plant N utilization in whitetop (Scolochloa festucacea) marshes in Manitoba, Canada by comparing experimentally spring-flooded marsh inside an impoundment with adjacent nonflooded marsh. The spring-flooded marsh had net N mineralization rates up to 4 times greater than nonflooded marsh. Total growing season net N mineralization was 124 kg N ha–1 in the spring-flooded marsh compared with 62 kg N ha–1 in the nonflooded marsh. Summer water level drawdown in the spring-flooded marsh decreased net N mineralization rates. Net nitrification rates increased in the nonflooded marsh following a lowering of the water table during mid summer. Growing season net nitrification was 33 kg N ha–1 in the nonflooded marsh but < 1 kg N ha–1 in the spring-flooded marsh. Added NO3–1 induced nitrate reductase (NRA) activity in whitetop grown in pot culture. Field-collected plants showed higher NRA in the nonflooded marsh. Nitrate comprised 40% of total plant N uptake in the nonflooded marsh but <1% of total N uptake in the spring-flooded marsh. Higher plant N demand caused by higher whitetop production in the spring-flooded marsh approximately balanced greater net N mineralization. A close association between the presence of spring flooding and net N mineralization and net nitrification rates indicated that modifications to prairie marshes that change the pattern of spring inundation will lead to rapid and significant changes in marsh N cycling patterns. 相似文献
5.
B. De Bruin F. W. T. Penning De Vries L. W. Van Broekhoven N. Vertregt S. C. Van De Geijn 《Plant and Soil》1989,113(1):69-78
In this study the rates of net mineralization, net immobilization and net nitrification have been quantified under laboratory conditions in a sandy low-humus soil from a semi-arid region, in absence of plant growth. Incubation experiments were carried out under constant humidity and under alternating wet and dry conditions to simulate field conditions during the rainy season. The ammonium and nitrate content of the incubates were determined and their CO2 production measured.The rate of net mineralization at field capacity was 0.6 kg N ha–1d–1 during the first 40 days and decreased to 0.06 kg N ha–1d–1 after 400 days. This rate was twice as high on wet days under alternating wet and dry conditions. The rate of net nitrification during alternating wet and dry conditions was also higher (1.9 kg N ha–1d–1) than at constant field capacity (1.3 kg N ha–1d–1) until the ammonium was almost completely depleted. These rates of net mineralization and net nitrification are in agreement with field observations.Net immobilization did not occur in the experiments, unless glucose was added to the soil.The data on CO2 production and net mineralization showed that the C/N ratio of the degraded material was around 9 or below. It is much lower than the ratio of total carbon over total nitrogen in the soil. This indicates that microorganisms and compounds high in nitrogen were mineralized. Certainly after about 30 days the only growth taking place is based on turnover of material of the microbial biomass itself.A decrease in the amount of inorganic nitrogen was observed upon drying of the soil, while it returned to the original content after rewetting. It is postulated that this might be due to temporary uptake of nitrogen in an inorganic form in microorganisms as part of their osmoregulation. 相似文献
6.
硝化抑制剂DCD、 DMPP对褐土氮总矿化速率和硝化速率的影响 总被引:5,自引:0,他引:5
采用15N库稀释-原位培养法研究了硝化抑制剂DCD、DMPP对华北盐碱性褐土氮总矿化速率和硝化速率的影响.试验在山西省运城市种植玉米的盐碱性土壤上进行,设单施尿素、尿素+DCD、尿素+DMPP 3个处理.结果表明:施肥后2周,DCD、DMPP分别使氮总矿化速率和氮总硝化速率减少了25.5%、7.3%和60.3%、59.1%,DCD对氮总矿化速率的影响显著高于DMPP,两者对氮总硝化速率的影响无显著差异;而在施肥后7周,不同硝化抑制剂对氮总硝化速率的影响存在差异.施肥后2周,3个处理的土壤氮总矿化速率和硝化速率分别是施肥前的7.2 ~10.0倍和5.5 ~21.5倍;NH4+和NO3-消耗速率分别是施肥前的9.1 ~12.2倍和5.1 ~8.4倍,这是由氮肥对土壤的激发效应所致.硝化抑制剂使氮肥更多地以NH4+形式保持在土壤中,减少了NO3-的积累.土壤氮总矿化速率和总硝化速率受硝化抑制剂的抑制是N2O减排的主要原因. 相似文献
7.
The effect of plant species on soil nitrogen mineralization 总被引:8,自引:0,他引:8
8.
The plant available nitrogen (PAN) content of dairy manure is commonly calculated using concentration and availability coefficients for organic nitrogen (N) and ammonium N (NH4), but the carbon (C) fraction of the manure also influences the availability of N over time. We evaluated the interactive effect of manure C and N from nine dairy manures during a 176 days aerobic incubation. All of the manures had appreciable NH4 content, and varied widely in fibrous C. The incubation was conducted using sandy loam (coarse-loamy, mixed, frigid, Typic Haplorthod) and silt loam (fine, illitic, non-acid, frigid, Aeric Epiaquepts) soils at 25°C and 60% water-filled pore space. There were clear differences in nitrate (NO3) accumulation over time, including manures that resulted in net nitrification and net immobilization. For both soils, the rate of nitrification at 7 and 56 days after application, and the amount of NO3 accumulated at the end of the incubation (176 days) were strongly correlated (r = –0.88) with C: NH4 and also to the ratio of neutral detergent fiber (NDF):NH4 (r = –0.90). The addition of manure C also resulted in significant net immobilization, compared to addition of mineral N fertilizer alone. These studies demonstrate that increased understanding of manure C and N interactions may lead to improved prediction of manure PAN. 相似文献
9.
Patterns of net nitrogen mineralization and nitrification in 0–7.5 cm deep mineral soils of different stages (seral ages 1,
6 and 20 years) of a post-fire coastal fynbos succession were assayed using laboratory andin situ incubations. No evidence of increasing allelopathic inhibition of nitrification with successional development was found as
NO3−N was the predominant product at all seral stages and the NO3−N∶NH4−N ratio remained constant. Rather the results of field incubations of soils beneathProtea repens stands of different successional ages showed that increased mineralization and nitrification appeared to be associated with
increased soil total N content rather than with successional age. Further, the incubation of soilsin situ during the dry summer months showed that NO3−N production appears to be closely related to temperature and soil moisture content, both of which are variables that vary
throughout succession due to the changing structure of the vegetation. 相似文献
10.
We examined soil nitrogen (N) mineralization and nitrification rates, and soil and forest floor properties in one native forest:
evergreen broad-leaved forest (EBLF), one secondary shrubs (SS), and three adjacent plantation forests: Chinese fir plantation
(CFP), bamboo plantation (BP) and waxberry groves (WG) in Tiantong National Forest Park, Eastern China. All forests showed
seasonal dynamics of N mineralization and nitrification rates. Soil N mineralization rate was highest in EBLF (1.6 ± 0.3 mg-N kg−1 yr−1) and lowest in CFP (0.4 ± 0.1 mg-N kg−1 yr−1). Soil nitrification rate was also highest in EBLF (0.6 ± 0.1 mg-N kg−1 yr−1), but lowest in SS (0.02 ± 0.01 mg-N kg−1 yr−1). During forest conversion of EBLF to SS, CFP, BP and WG, soil N mineralization rate (10.7%, 73%, 40.3% and 69.8%, respectively),
soil nitrification rate (94.9%, 32.2%, 33.9% and 39%, respectively), and soil N concentration (50%, 65.4%, 78.9% and 51.9%,
respectively) declined significantly. Annual soil N mineralization was positively correlated with total C and N concentrations
of surface soil and total N concentration of forest floor, and negatively correlated with soil bulk density, soil pH and C:N
ratio of forest floor across the five forests. Annual soil nitrification was positively correlated with total C concentration
of surface soil and N concentration of forest floor, and negatively correlated with soil bulk density and forest floor mass.
In contrast, annual soil nitrification was not correlated to pH value, total N concentration, C:N ratio of surface soil and
total C concentration and C:N ratio of forest floor. 相似文献
11.
Christopher Neill Marisa C. Piccolo Carlos C. Cerri Paul A. Steudler Jerry M. Melillo Marciano Brito 《Oecologia》1997,110(2):243-252
Previous studies of the effect of tropical forest conversion to cattle pasture on soil N dynamics showed that rates of net N mineralization and net nitrification were lower in pastures compared with the original forest. In this study, we sought to determine the generality of these patterns by examining soil inorganic N concentrations, net mineralization and nitrification rates in 6 forests and 11 pastures 3 years old or older on ultisols and oxisols that encompassed a wide variety of soil textures and spanned a 700-km geographical range in the southwestern Brazilian Amazon Basin state of Rondônia. We sampled each site during October-November and April-May. Forest soils had higher extractable NO3 ?-N and total inorganic N concentrations than pasture soils, but substantial NO3 ?-N occurred in both forest and pasture soils. Rates of net N mineralization and net nitrification were higher in forest soils. Greater concentrations of soil organic matter in finer textured soils were associated with greater rates of net N mineralization and net nitrification, but this relationship was true only under native forest vegetation; rates were uniformly low in pastures, regardless of soil type or texture. Net N mineralization and net nitrification rates per unit of total soil organic matter showed no pattern across the different forest sites, suggesting that controls of net N mineralization may be broadly similar across a wide range of soil types. Similar reductions in rates of net N transformations in pastures 3 years old or older across a range of textures on these soils suggest that changes to soil N cycling caused by deforestation for pasture may be Basin-wide in extent. Lower net N mineralization and net nitrification rates in established pastures suggest that annual N losses from largely deforested landscapes may be lower than losses from the original forest. Total ecosystem N losses since deforestation are likely to depend on the balance between lower N loss rates from established pastures and the magnitude and duration of N losses that occur in the years immediately following forest clearing. 相似文献
12.
Temperature-dependent nitrogen transformations in acid oak-beech forest litter in the Netherlands 总被引:1,自引:0,他引:1
Laboratory incubation experiments have been carried out to quantify net nitrogen mineralization and nitrification in oak-beech litter at temperatures ranging from 0 to 30°C. Net mineralization was linearly proportional to temperature. Nitrification was inhibited at 0,5 and 30°C. As compared with soils under cultivation, there is only restricted knowledge of nitrification kinetics in acid forest litters, especially when temperature is considered. With these litter types, one should be cautious applying high incubation temperatures, which seldomly occur under field conditions. 相似文献
13.
Spatial variability of soil properties directly influences forest growth. However, spatial variation in soil properties has not been studied within tropical dry forests. As such, it is unclear whether soil properties, like moisture and N availability, display spatial variation at scales similar to that of other ecosystems. To gain insight into this variation, we established a 56 × 56 m sampling grid in tropical dry forest on the Caribbean island of St. Lucia. Samples collected at 4-m intervals were analyzed for forest floor mass, soil texture, pH, organic C, net N mineralization, net nitrification and available P. Geostatistical procedures were used to determine spatial autocorrelation of the aforementioned properties and processes. Semivariogram parameters were used in a block kriging procedure to produce spatial maps of soil properties. At the scale of our study, most soil properties exhibited spatial autocorrelation at distances of 24 m or less. Varying degrees of similarity were found between patterns of forest floor mass, organic C, net N mineralization, net nitrification and available P. No similarity was found between soil texture or pH and other properties. Fine-scale spatial patterns of net N mineralization and net nitrification are likely driven by overstory litter inputs, rather than variation in soil texture and water availability. 相似文献
14.
Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input 总被引:1,自引:0,他引:1
BIRGIT KOEHLER MARIFE D. CORRE EDZO VELDKAMP HANS WULLAERT S. JOSEPH WRIGHT† 《Global Change Biology》2009,15(8):2049-2066
Tropical nitrogen (N) deposition is projected to increase substantially within the coming decades. Increases in soil emissions of the climate‐relevant trace gases NO and N2O are expected, but few studies address this possibility. We used N addition experiments to achieve N‐enriched conditions in contrasting montane and lowland forests and assessed changes in the timing and magnitude of soil N‐oxide emissions. We evaluated transitory effects, which occurred immediately after N addition, and long‐term effects measured at least 6 weeks after N addition. In the montane forest where stem growth was N limited, the first‐time N additions caused rapid increases in soil N‐oxide emissions. During the first 2 years of N addition, annual N‐oxide emissions were five times (transitory effect) and two times (long‐term effect) larger than controls. This contradicts the current assumption that N‐limited tropical montane forests will respond to N additions with only small and delayed increases in soil N‐oxide emissions. We attribute this fast and large response of soil N‐oxide emissions to the presence of an organic layer (a characteristic feature of this forest type) in which nitrification increased substantially following N addition. In the lowland forest where stem growth was neither N nor phosphorus (P) limited, the first‐time N additions caused only gradual and minimal increases in soil N‐oxide emissions. These first N additions were completed at the beginning of the wet season, and low soil water content may have limited nitrification. In contrast, the 9‐ and 10‐year N‐addition plots displayed instantaneous and large soil N‐oxide emissions. Annual N‐oxide emissions under chronic N addition were seven times (transitory effect) and four times (long‐term effect) larger than controls. Seasonal changes in soil water content also caused seasonal changes in soil N‐oxide emissions from the 9‐ and 10‐year N‐addition plots. This suggests that climate change scenarios, where rainfall quantity and seasonality change, will alter the relative importance of soil NO and N2O emissions from tropical forests exposed to elevated N deposition. 相似文献
15.
Nitrogen transformations in two nitrogen saturated forest ecosystems subjected to an experimental decrease in nitrogen deposition 总被引:1,自引:0,他引:1
Nitrogen transformations were studied in the forest floor and mineral soil (0–5 cm) of a Douglas fir forest (Pseudotsuga menziesii (Mirb.) Franco.) and a Scots pine forest (Pinus sylvestris L.) in the Netherlands. Curren nitrogen depositions (40 and 56 kg N ha-1 yr-1, respectively) were reduced to natural background levels (1–2 kg N ha-1 yr-1) by a roof construction. The study concentrated on rates and dynamic properties of nitrogen transformations and their link with the leaching pattern and nitrogen uptake of the vegetation under high and reduced nitrogen deposition levels. Results of an in situ field incubation experiment and laboratory incubations were compared. No effect of the reduced N deposition on nitrogen transformations was found in the Douglas fir forest. In the Scots pine forest, however, during some periods of the year nitrogen transformations were significantly decreased under the low nitrogen deposition level. At low nitrogen inputs a net immobilization occurred during most of the year leading to a very small net mineralization for the whole year. In laboratory and in individual field plots nitrogen transformations were negatively correlated with initial inorganic nitrogen concentrations. Nitrogen budget estimates showed that nitrogen transformations were probably underestimated by the in situ incubation technique. Nevertheless less nitrogen was available for plant uptake and leaching at the low deposition plots. 相似文献
16.
In situ estimates of annual net nitrogen mineralization and nitrification in a subarctic watershed 总被引:2,自引:0,他引:2
Summary Annual estimates of surface soil nitrogen transformations were determined using an in situ method in four different subarctic vegetation types within a watershed in southwestern Alaska. The net nitrogen mineralization estimates were 22.5, 0.5, 4.7, and 2.7 kg-N ha-1 yr-1 for the alder, dry tundra, moist tundra, and white spruce sites, respectively. Only the soil from the alder site showed net nitrification (about 10 kg-N ha-1 yr-1). Annual inogranic nitrogen flux from the overlying organic layer to the mineral soil was almost seven times greater than net N production in the surface mineral soil in the alder site, indicating that the alder forest floor is potentially a substantial source for plant-available N. Rates of mobilization of N from the surface organic layers of the other sites were similar to net N production rates in surface mineral soils. In situ rates of N transformations showed a similar trend among sites as did laboratory estimates conducted in a previous study, suggesting a strong substrate control of N transformations in these soils. 相似文献
17.
Effects of chemical composition on nitrogen mineralization from green manures of seven tropical leguminous trees 总被引:7,自引:1,他引:7
Green manures from seven tropical leguminous trees were incubated with soil to determine the rates and controls of net nitrogen release. Fresh green manure (leaves and succulent twigs) was mixed with moist soil and incubated in polyethylene bags. Net N mineralization from green manures was estimated by the accumulation of extractable ammonium and nitrate minus the accumulation in soil alone. Patterns of N mineralization were complex, differed among species, and at 12 weeks ranged from 10 to 65 percent of original green-manure N. Cumulative net N mineralization was negatively correlated with initial soluble polyphenol content in the early phases of decomposition (1 through 8 weeks) and with initial lignin content in later phases (4 through 12 weeks). Neither initial percent N nor lignin: N ratio were strongly correlated with N mineralization. The best chemical index of N release was the initial polyphenol: N ratio. This study confirms previous findings that N mineralization from tropical legumes is controlled more by soluble polyphenols than by lignin or N content. 相似文献
18.
Marisa C. Piccolo Christopher Neill Jerry M. Melillo Carlos C. Cerri Paul A. Steudler 《Plant and Soil》1996,182(2):249-258
The natural abundance of 15N was examined in soil profiles from forests and pastures of the Brazilian Amazon Basin to compare tropical forests on a variety of soil types and to investigate changes in the sources of nitrogen to soils following deforestation for cattle ranching. Six sites in the state of Rondônia, two sites in Pará and one in Amazonas were studied. All sites except one were chronosequences and contained native forest and one or more pastures ranging from 2 to 27 years old. Forest soil 15N values to a depth of 1 m ranged from 8 to 23 and were higher than values typically found in temperate forests. A general pattern of increasing 15N values with depth near the soil surface was broadly similar to patterns in other forests but a decrease in 15N values in many forest profiles between 20 and 40 cm suggests that illuviation of 15N-depleted nitrate may influence total soil 15N values in deeper soil where total N concentrations are low. In four chronosequences in Rondônia, the 15N values of surface soil from pastures were lower than in the original forest and 15N values were increasingly depleted in older pastures. Inputs of atmospheric N by dinitrogen fixation could be an important N source in these pastures. Other pastures in Amazonas and Pará and Rondônia showed no consistent change from forest values. The extent of fractionation that leads to 15N enrichment in soils was broadly similar over a wide range of soil textures and indicated that similar processes control N fractionation and loss under tropical forest over a broad geographic region. Forest 15N profiles were consistent with conceptual models that explain enrichment of soil 15N values by selective loss of 14N during nitrification and denitrification. 相似文献
19.
Quantification of net nitrogen mineralization (NNM) in soils is indispensable in order to optimize N fertilization of crops.
Two long-term laboratory incubation methods were applied to determine rates of net nitrogen mineralization (rNNM) of soils from two sites of arable land (sandy loam soil, silty loam soil) at four temperature levels (2°C, 8°C, 14°C, 21°C).
Since variability within replicates was small, the modified 12-week incubation method of Stanford and Smith (1972) using disturbed
soils allowed to establish reliable Arrhenius functions with reasonable expenditure. The fit of the functions derived from
the 5-month incubation of 23 undisturbed soil columns (4420 cm3) was worse. This was caused by greater variability and less differentiation between temperature levels. Results of both experiments
could be described best by zero-order kinetics. Mean mineralization rates of disturbed samples were approximately twice as
high than those of undisturbed samples. The suitability of both methods for the prediction of NNM at site conditions is discussed.
Actual respiration (AR) at incubation temperatures and substrate induced respiration (SIR) were measured at the end of the
incubation of undisturbed soil columns. The results presented reveal that soil microbial communities develop in a different
manner during long-term incubation at different temperatures. This behavior offends the underlying assumption that soil microbes
remain in steady-state during incubation and that rising rates are physiological reactions to temperature enhancement. Therefore
soil microbial biomass (SMB) dynamics during the experiment has to be accounted for when rates of NNM and Arrhenius functions
are established. R Merck Section editor 相似文献
20.
The Catskill Mountains of southeastern New York receive among the highest rates of atmospheric nitrogen (N) deposition in eastern North America, and ecosystems in the region may be sensitive to human disturbances that affect the N cycle. We studied the effects of a clearcut in a northern hardwood forest within a 24-ha Catskill watershed on the net rates of N mineralization and nitrification in soil plots during 6 years (1994–1999) that encompassed 3-year pre- and post-harvesting periods. Despite stream NO3– concentrations that increased by more than 1400 mol l–1 within 5 months after the clearcut, and three measures of NO3– availability in soil that increased 6- to 8-fold during the 1st year after harvest, the net rates of N mineralization and nitrification as measured by in situ incubation in the soil remained unchanged. The net N-mineralization rate in O-horizon soil was 1– 2 mg N kg–1 day–1 and the net nitrification rate was about 1 mg N kg–1 day–1, and rates in B-horizon soil were only one-fifth to one-tenth those of the O-horizon. These rates were obtained in single 625 m2 plots in the clearcut watershed and reference area, and were confirmed by rate measurements at 6 plots in 1999 that showed little difference in N-mineralization and nitrification rates between the treatment and reference areas. Soil temperature increased 1 ± 0.8 °C in a clearcut study plot relative to a reference plot during the post-harvest period, and soil moisture in the clearcut plot was indistinguishable from that in the reference plot. These results are contrary to the initial hypothesis that the clearcut would cause net rates of these N-cycling processes to increase sharply. The in situ incubation method used in this study isolated the samples from ambient roots and thereby prevented plant N uptake; therefore, the increases in stream NO3– concentrations and export following harvest largely reflect diminished uptake. Changes in temperature and moisture after the clearcut were insufficient to measurably affect the net rates of N mineralization and nitrification in the absence of plant uptake. Soil acidification resulting from the harvest may have acted in part to inhibit the rates of these processes.
The US Governments right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged. 相似文献