首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为提高蛋白质-蛋白质相互作用(protein-protein interaction, PPI)预测的准确性,并深入探索细胞信号传导和疾病发生的生物学机制,本文提出一种简称为CBSG-PPI的预测算法。该算法首先利用3层前馈网络来处理蛋白质的k-mer特征,采用CT方法和Bert方法提取蛋白质的氨基酸序列以及使用卷积神经网络提取蛋白质的序列特征,再结合图神经网络和多层感知机来准确预测PPI。与现有的预测技术相比,CBSG-PPI在准确率、 F1分数、召回率和精确率等多个关键性能指标上展现了明显的优势,在公开数据集上分别达到了0.855、 0.853、 0.840和0.866的高分。此外,本算法采用了一种改进的参数调整方法,显著提高了计算效率,其预测速度比传统算法快了约140倍。这一显著的性能提升,不仅证实了CBSG-PPI在预测PPI方面的研究价值,也为未来蛋白质间相互作用网络的构建和分析提供了有用的计算工具。  相似文献   

2.
详细考察了基于HNP(H:hydtophobic,N:neutral,P:hydrophilic)模型及相对熵的蛋白质设计方法对于不同结构类型蛋白质的适用性,并与基于HP模型的结果进行了比较.通过对190个4种不同结构类型的蛋白质进行预测,结果表明,基于HNP模型及相对熵的设计方法对于不同结构类型的蛋白质具有普适性.进一步的研究发现,对于α螺旋、β折叠等规则的二级结构,该方法的预测成功率高于无规卷曲结构预测成功率.另外,还比较了对不同氨基酸的预测差异,结果显示亲水残基的预测成功率较高.此外,研究表明该方法对于蛋白质保守残基的预测成功率高于非保守残基.在以上分析的基础上,进一步讨论了导致这些差异的原因.这些研究为基于相对熵的蛋白质设计方法的实际应用和进一步的发展打下了良好基础.  相似文献   

3.
本文对蛋白质loop结构进行了反向研究,即对由n个残基构成的loop已知其空间结构,求匹配的n个氨基酸残基序列.把loop的3D信息转化为一个加权完全图Kn模型,然后求加权Kn图的最小Hamilton路.这条H路对应与寻找一个氨基酸残基序列,使该序列能够折叠成这个立体结构模型.根据Bayesian定律得到一个加权表,应用对loop的预测问题,取得预期的结果.  相似文献   

4.
吴琳琳  徐硕 《生物信息学》2010,8(3):187-190
蛋白质结构预测是现代计算生物领域最重要的问题之一,而蛋白质二级结构预测是蛋白质高级结构预测的基础。目前蛋白质二级结构的预测方法较多,其中SVM方法取得了较高的预测精度。重在阐述使用SVM用于蛋白质二级结构预测的步骤,以及与其他方法进行比较时应该注意的事项,为下一步的研究提供参考及启发。  相似文献   

5.
在蛋白质结构预测的研究中,一个重要的问题就是正确预测二硫键的连接,二硫键的准确预测可以减少蛋白质构像的搜索空间,有利于蛋白质3D结构的预测,本文将预测二硫键的连接问题转化成对连接模式的分类问题,并成功地将支持向量机方法引入到预测工作中。通过对半胱氨酸局域序列连接模式的分类预测,可以由蛋白质的一级结构序列预测该蛋白质的二硫键的连接。结果表明蛋白质的二硫键的连接与半胱氨酸局域序列连接模式有重要联系,应用支持向量机方法对蛋白质结构的二硫键预测取得了良好的结果。  相似文献   

6.
目的 长链非编码RNA在遗传、代谢和基因表达调控等方面发挥着重要作用。然而,传统的实验方法解析RNA的三级结构耗时长、费用高且操作要求高。此外,通过计算方法来预测RNA的三级结构在近十年来无突破性进展。因此,需要提出新的预测算法来准确的预测RNA的三级结构。所以,本文发展可以用于提高RNA三级结构预测准确性的碱基关联图预测方法。方法 为了利用RNA理化特征信息,本文应用多层全卷积神经网络和循环神经网络的深度学习算法来预测RNA碱基间的接触概率,并通过注意力机制处理RNA序列中碱基间相互依赖的特征。结果 通过多层神经网络与注意力机制结合,本文方法能够有效得到RNA特征值中局部和全局的信息,提高了模型的鲁棒性和泛化能力。检验计算表明,所提出模型对序列长度L的4种标准(L/10、L/5、L/2、L)碱基关联图的预测准确率分别达到0.84、0.82、0.82和0.75。结论 基于注意力机制的深度学习预测算法能够提高RNA碱基关联图预测的准确率,从而帮助RNA三级结构的预测。  相似文献   

7.
神经网络在蛋白质二级结构预测中的应用   总被引:3,自引:0,他引:3  
介绍了蛋白质二级结构预测的研究意义,讨论了用在蛋白质二级结构预测方面的神经网络设计问题,并且较详尽地评述了近些年来用神经网络方法在蛋白质二级结构预测中的主要工作进展情况,展望了蛋白质结构预测的前景。  相似文献   

8.
细胞因子(cytokine)是一类由免疫细胞和某些非免疫细胞合成和分泌的信号分子,在免疫系统中通过结合相应受体调节细胞生长、分化和调控免疫应答。目前研究多侧重于通过实验方法检测细胞因子和受体的相互作用来研究细胞间的通讯网络,但存在实验周期长、设备要求高和成本高等不足。因此,有必要通过计算方法来加快对细胞-细胞因子相互作用(cell-cytokine interactions, CKI)的系统研究。本文提出一种基于变分图自编码器(variational graph auto-encoder, VGAE)预测细胞-细胞因子相互作用的深度学习模型——DeepCKI。该模型可有效融合蛋白质相互作用网络和不同类型的蛋白质特征,充分挖掘网络拓扑结构和节点属性中的有效信息,实现对细胞-细胞因子相互作用的高效预测。与变分自编码和深度神经网络方法相比,采用图结构设计的DeepCKI表现出了最优的预测性能。DeepCKI模型对4种不同类型细胞-细胞因子相互作用的ROC曲线下面积均高于0.8,模型具有一定的鲁棒性和有效性。预测打分排名前100的细胞-细胞因子相互作用中,有36对已被最新发表文献验证,表明该模...  相似文献   

9.
蛋白质的序列决定结构,结构决定功能。新一代准确的蛋白质结构预测工具为结构生物学、结构生物信息学、药物研发和生命科学等许多领域带来了全新的机遇与挑战,单链蛋白质结构预测的准确率达到与试验方法相媲美的水平。本综述概述了蛋白质结构预测领域的理论基础、发展历程与最新进展,讨论了大量预测的蛋白质结构和基于人工智能的方法如何影响实验结构生物学,最后,分析了当前蛋白质结构预测领域仍未解决的问题以及未来的研究方向。  相似文献   

10.
生物图是细胞生物学教学的重要组成部分。利用生物图能够比较直观地解释细胞的形态结构及发育规律,便于学生对知识的理解与应用。我们以"图"为主线在细胞生物学教学中建立了"图启"教学模式:通过教师搜集资料、修图制图获得最适合教师本人讲授并易于学生理解的教学图片;理论教学中教师讲解图片,学生识图读图;实验教学中学生通过操作掌握基本技术和方法,获得切片,教师引导学生认真观察,准确绘图。"图启"教学模式提高教师的修图制图能力,提高教学水平;培养学生的识图读图绘图能力;围绕各种生物图将教师备课、授课、实践有机结合,最大限度地提高教学质量,提升了学生的综合能力。本文探讨了应用"图启"教学模式,采用启发式教学、差异分组、任务驱动等教学方法进行减数分裂教学的过程及意义,为"图启"教学模式在细胞生物学教学中的应用奠定基础。  相似文献   

11.
An ability to assign protein function from protein structure is important for structural genomics consortia. The complex relationship between protein fold and function highlights the necessity of looking beyond the global fold of a protein to specific functional sites. Many computational methods have been developed that address this issue. These include evolutionary trace methods, methods that involve the calculation and assessment of maximal superpositions, methods based on graph theory, and methods that apply machine learning techniques. Such function prediction techniques have been applied to the identification of enzyme catalytic triads and DNA-binding motifs.  相似文献   

12.
A graph-theory algorithm for rapid protein side-chain prediction   总被引:19,自引:0,他引:19       下载免费PDF全文
Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side-chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34342 side chains in <7 min of computer time. The total chi(1) and chi(1 + 2) dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone-dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy.  相似文献   

13.
14.
MotivationProtein-protein interactions are important for many biological processes. Theoretical understanding of the structurally determining factors of interaction sites will help to understand the underlying mechanism of protein-protein interactions. Taking advantage of advanced mathematical methods to correctly predict interaction sites will be useful. Although some previous studies have been devoted to the interaction interface of protein monomer and the interface residues between chains of protein dimers, very few studies about the interface residues prediction of protein multimers, including trimers, tetramer and even more monomers in a large protein complex. As we all know, a large number of proteins function with the form of multibody protein complexes. And the complexity of the protein multimers structure causes the difficulty of interface residues prediction on them. So, we hope to build a method for the prediction of protein tetramer interface residue pairs.ResultsHere, we developed a new deep network based on LSTM network combining with graph to predict protein tetramers interaction interface residue pairs. On account of the protein structure data is not the same as the image or video data which is well-arranged matrices, namely the Euclidean Structure mentioned in many researches. Because the Non-Euclidean Structure data can't keep the translation invariance, and we hope to extract some spatial features from this kind of data applying on deep learning, an algorithm combining with graph was developed to predict the interface residue pairs of protein interactions based on a topological graph building a relationship between vertexes and edges in graph theory combining multilayer Long Short-Term Memory network. First, selecting the training and test samples from the Protein Data Bank, and then extracting the physicochemical property features and the geometric features of surface residue associated with interfacial properties. Subsequently, we transform the protein multimers data to topological graphs and predict protein interaction interface residue pairs using the model. In addition, different types of evaluation indicators verified its validity.  相似文献   

15.
There is a growing interest in the identification of proteins on the proteome wide scale. Among different kinds of protein structure identification methods, graph-theoretic methods are very sharp ones. Due to their lower costs, higher effectiveness and many other advantages, they have drawn more and more researchers' attention nowadays. Specifically, graph-theoretic methods have been widely used in homology identification, side-chain cluster identification, peptide sequencing and so on. This paper reviews several methods in solving protein structure identification problems using graph theory. We mainly introduce classical methods and mathematical models including homology modeling based on clique finding, identification of side-chain clusters in protein structures upon graph spectrum, and de novo peptide sequencing via tandem mass spectrometry using the spectrum graph model. In addition, concluding remarks and future priorities of each method are given.  相似文献   

16.
In order to propose a reliable model for Brucella porin topology, several structure prediction methods were evaluated in their ability to predict porin topology. Four porins of known structure were selected as test-cases and their secondary structure delineated. The specificity and sensitivity of 11 methods were separately evaluated. Our critical assessment shows that some secondary structure prediction methods (PHD, Dsc, Sopma) originally designed to predict globular protein structure are useful on porin topology prediction. The overall best prediction is obtained by combining these three "generalist" methods with a transmembrane beta strand prediction technique. This "consensus" method was applied to Brucella porins Omp2b and Omp2a, sharing no sequence homology with any other porin. The predicted topology is a 16-stranded antiparallel beta barrel with Omp2a showing a higher number of negatively charged residue in the exposed loops than Omp2b. Experiments are in progress to validate the proposed topology and the functional hypotheses. The ability of the proposed consensus method to predict topology of complex outer membrane protein is briefly discussed.  相似文献   

17.
提出了基于图论模型的H系数分类蛋白质结构为H结型和NH结型的方法.论述了蛋白质结构中序列不相邻的C_α原子之间的空间距离与序列相邻的C_α原子之间空间距离的关系.用此方法对PDB的66个单链蛋白质结构进行分类,结果显示H结型占18.2%.H结在全α型中出现比例较高,在全β型中出现比例较小,所以H结倾向出现在含有α螺旋的蛋白质结构中.  相似文献   

18.
Eunsung Park  Julian Lee 《Proteins》2015,83(6):1054-1067
Many proteins undergo large‐scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non‐overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter‐domain bending motion. The performance of the algorithm is demonstrated on several proteins. Proteins 2015; 83:1054–1067. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
The major aim of tertiary structure prediction is to obtain protein models with the highest possible accuracy. Fold recognition, homology modeling, and de novo prediction methods typically use predicted secondary structures as input, and all of these methods may significantly benefit from more accurate secondary structure predictions. Although there are many different secondary structure prediction methods available in the literature, their cross-validated prediction accuracy is generally <80%. In order to increase the prediction accuracy, we developed a novel hybrid algorithm called Consensus Data Mining (CDM) that combines our two previous successful methods: (1) Fragment Database Mining (FDM), which exploits the Protein Data Bank structures, and (2) GOR V, which is based on information theory, Bayesian statistics, and multiple sequence alignments (MSA). In CDM, the target sequence is dissected into smaller fragments that are compared with fragments obtained from related sequences in the PDB. For fragments with a sequence identity above a certain sequence identity threshold, the FDM method is applied for the prediction. The remainder of the fragments are predicted by GOR V. The results of the CDM are provided as a function of the upper sequence identities of aligned fragments and the sequence identity threshold. We observe that the value 50% is the optimum sequence identity threshold, and that the accuracy of the CDM method measured by Q(3) ranges from 67.5% to 93.2%, depending on the availability of known structural fragments with sufficiently high sequence identity. As the Protein Data Bank grows, it is anticipated that this consensus method will improve because it will rely more upon the structural fragments.  相似文献   

20.
We have introduced a new method of protein secondary structure prediction which is based on the theory of support vector machine (SVM). SVM represents a new approach to supervised pattern classification which has been successfully applied to a wide range of pattern recognition problems, including object recognition, speaker identification, gene function prediction with microarray expression profile, etc. In these cases, the performance of SVM either matches or is significantly better than that of traditional machine learning approaches, including neural networks.The first use of the SVM approach to predict protein secondary structure is described here. Unlike the previous studies, we first constructed several binary classifiers, then assembled a tertiary classifier for three secondary structure states (helix, sheet and coil) based on these binary classifiers. The SVM method achieved a good performance of segment overlap accuracy SOV=76.2 % through sevenfold cross validation on a database of 513 non-homologous protein chains with multiple sequence alignments, which out-performs existing methods. Meanwhile three-state overall per-residue accuracy Q(3) achieved 73.5 %, which is at least comparable to existing single prediction methods. Furthermore a useful "reliability index" for the predictions was developed. In addition, SVM has many attractive features, including effective avoidance of overfitting, the ability to handle large feature spaces, information condensing of the given data set, etc. The SVM method is conveniently applied to many other pattern classification tasks in biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号