首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In starlings, the breeding season is terminated by a state of photorefractoriness. Birds remain completely reproductively inactive as long as long days are maintained, and only exposure to short days restores photosensitivity. Two experiments investigated the role of different doses of thyroxine in the development of photosensitivity in castrated starlings. First, photorefractory castrated male starlings were moved from long (18L:6D) to short (8L:16D) days, and received in the drinking water either 1 or 10 mg · 1-1 thyroxine for the first 7 weeks of a 14-week observation period. Control birds regained photosensitivity after 5 weeks of short days, as signaled by a spontaneous increase in plasma LH, whereas the return to photosensitivity was delayed until weeks 7 and 9 in the 1- and 10-mg · 1-1 thyroxine-treated birds, respectively. In the second experiment, the effect of different doses of thyroxine was explored at the level of the hypothalamic Gn-RH neurosecretory neurones. The acquisition of photosensitivity in control birds transferred from long to short days was characterized by a marked increase in hypothalamic Gn-RH content (while long-day controls maintained low Gn-RH content). Doses of 10 and 20 mg · 1-1 of thyroxine completely prevented the return to photosensitivity, as seen through changes in either plasma LH concentrations or hypothalamic Gn-RH content, while a dose of 1 mg · 1-1 allowed a partial recovery of photosensitivity, as hypothalamic Gn-RH content increased to an intermediate level and the spontaneous rise in plasma LH occurred slowly but steadily.Abbreviations Gn-RH gonadotrophin-releasing hormone - LH luteinizing hormone - LHRH-I luteinizing hormone releasing hormone  相似文献   

2.
LH surges occur 3 h later in intact anovulatory hamsters exposed to nonstimulatory photoperiods (6L:18D) for 8 wk than the proestrous LH surges from the same hamsters housed in 6L:18D for 3 weeks. In ovariectomized hamsters housed in 6L:18D for 3 wk, the LH surge was observed at the same time of day as in intact anovulatory hamsters at 8 wk. Implanting Silastic capsules containing estradiol benzoate (EB) advanced the timing of the daily surge of LH in ovariectomized hamsters housed in 6L:18D for 8 wk. EB also affected the magnitude of the LH surge in hamsters housed in 6L:18D for 8 wk. Two days after receiving EB implants, daily LH surges in anovulatory hamsters were suppressed by 75% and in ovariectomized "regressed" hamsters by 37%. This difference between groups was probably due to ovarian progesterone in intact animals. Estrogen is not required for LH surges in anovulatory hamsters but suppresses LH release when administered exogenously. The delay in the timing of the LH surge in anovulatory hamsters may result from the decline in estrogen resulting from short photoperiod exposure.  相似文献   

3.
Eleven heifers, between 63 and 197 days of age, were exposed to 18 hr light/day (L) or natural photoperiods (N), beginning October 19, 1979. They were ovariectomized 8 weeks later. LH concentrations after ovariectomy were not affected by photoperiod, but the rate of increase of FSH after ovariectomy was greater (P<0.10) for group L than for group N. Three weeks after ovariectomy, heiters were injected, IV, with 0.1 mug/kg estradiol-17beta. LH concentrations initially decreased after injection. This was followed by a series of pulses larger than those prior to injection. FSH concentrations declined after injection and remained low throughout the sampling period. The net response of LH concentrations to estradiol (mean post-injection concentration minus mean pre-injection concentration) was greater (P=0.05) for group L (4.7 +/- 0.49 ng/ml) than for group N (2.9 +/- 0.37 ng/ml). Photoperiod did not affect the net response of FSH concentrations to estradiol. We concluded that exposing prepubertal heifers to 18 hr light/day during the winter resulted in a greater rate of increase of FSH after ovariectomy and greater estrogen-induced LH release. Because the response of LH to estradiol-17beta differed from the response of FSH, these hormones may be regulated differently.  相似文献   

4.
目的:探究腹腔镜下卵巢囊肿剥除术后缝合与电凝止血对卵巢功能的影响。方法:选择2014年5月~2015年12月期间我院收治卵巢囊肿患者78例为研究对象,两组患者均行腹腔镜下卵巢囊肿剥除术,根据患者术中止血方式的不同将其分为观察组(41例)和对照组(37例);观察组术中采用双极电凝止血,对照组患者性术中采用缝合止血;观察并比较术后4周、12周两组患者促卵泡生长激素(FSH)、促黄体激素(LH)、雌二醇(E2)及窦状卵泡计数(Shape of sinus follicle count,AFC),对比两组术后12周卵巢功能恢复情况。结果:术后4周两组患者FSH、LH水平较术前升高,E2及AFC水平较术前降低,差异均有统计学意义(P0.05);术后12周对照组FSH、LH、E2及AFC水平与术前比较,差异无统计学意义(P0.05),观察组患者FSH、LH水平较术前升高,E2及AFC水平较术前降低,且观察组患者FSH、LH水平高于对照组,E2及AFC水平低于对照组,差异均有统计学意义(P0.05);术后12周,观察组患者出现排卵异常、经量过少及经期延长的发生率均高于对照组(P0.05)。结论:缝合止血在腹腔镜下卵巢囊肿剥除术止血对患者卵巢功能的损伤作用小于电凝止血,术后卵巢功能恢复快,临床上应当优选缝合止血,降低对卵巢功能的影响。  相似文献   

5.
In brahminy myna a photosensitive species, long days caused full gonadal development followed by rapid regression, whereas short days inhibited these responses. Experiments were performed to investigate the effects of duration of photoperiod and gonadal hormones on the recovery of photosensitivity to long photoperiods in male birds. Groups of photorefractory birds were subjected to 8-, 9- or 11-hr daily photoperiods for 45 (6.5 weeks) or 63 (9 weeks) days and then transferred to 15 h daily photoperiods for 60 days to check for the regaining of photoresponsivity. A control group was held under 15L:9D throughout the period of study. Another experiment included three groups of photorefractory males, which were maintained on 9L:15D for 9 weeks and administered with, birth-1day-1 alternately for first 30 days olive oil or different doses (10 or 100 micrograms) of testosterone propionate (TP)/bird/day alternately for first 30 days, and then transferred to 15L:9D for another 30 days to test the recovery of photosensitivity. The results indicated that (i) a period of exposure to short daylengths is required to dissipate photorefractoriness, (ii) termination of photorefractoriness is dependent on the length and duration of photoperiods and (iii) TP inhibits the recovery of photosensitivity in a dose dependent manner.  相似文献   

6.
After lambing forty-five ewes were allocated to three groups, two of sixteen and one of thirteen ewes. The lambs of the two groups of sixteen ewes were weaned on Day 1 after lambing and the ewes were fed a diet of 100% (Group H) or 50% (Group R) of maintenance energy requirements. The thirteen ewes in the third group (Group L) suckled twin lambs and were fed freely. During the first 3 weeks after lambing, oestrus was observed for 11/16 (Group H) and 8/16 (Group R) ewes; of the ewes which had shown oestrus in the two groups, ovulation occurred in 5/8 and 5/7 respectively. Only 1/13 Group-L ewes showed oestrus and ovulated during the same period. The mean plasma concentrations of progesterone and LH were unaffected by the treatments and were around 0-4 and 1-5 ng/ml, respectively. Restricted feeding had no effect on oestrus, ovulation or the hormone levels during the oestrus cycle following synchronization. The onset of oestrus and the start of the preovulatory discharge of LH were 3 and 6 hr later, respectively, in the lactating ewes (Group L) than in those in Groups H and R. Ewes in Group L also had a higher ovulation rate, 2-8 +/- 0-2 versus 2-1 +/- 0-2 (P less than 0-05). Restricted feeding reduced the number of ewes lambing; only 1/11 ewes in Group R, considered to have conceived because of the presence of high progesterone levels 17 days after mating, subsequently lambed compared with 6/12 in Group H and 5/9 in Group L.  相似文献   

7.
During seasonal anoestrus (long-days), oestradiol can effectively inhibit the pulsatile secretion of luteinizing hormone (LH) in sheep. The aim of our trial was to determine whether the same regulatory mechanism exists in the pig. Altogether, 20 ovariectomized and oestradiol-implanted gilts (16 domestic pigs, 4 European wild boars) were randomly allocated to two treatment groups. The first group was kept under a short-day light-dark cycle of 8L:16D, and the second group under a long-day light regime of 16L:8D. After a 6-week treatment period, blood samples were taken at 20-min intervals for 12h. After sampling, the light regimens were switched. Sampling was then repeated following another 6 weeks of treatment. In both treatment groups, 2.3 LH pulses occurred every 12h. The basal LH level was 0.7+/-0.4 ng/ml for the short-day group and 1.0+/-0.5 ng/ml for the long-day group. The mean LH level was 0.9+/-0.4 and 1.3+/-0.6 ng/ml and the LH pulse amplitude 0.5+/-0.4 and 0.6+/-0.5 ng/ml, respectively. The basal and mean LH levels were therefore lower in short-day gilts (P<0.05), while LH pulse amplitude and frequency remained unaffected by treatment. In conclusion, the 6-week period under two different light regimes resulted in higher basal LH concentration in long-day gilts but was not able to produce changes in LH frequency in prepubertal gilts.  相似文献   

8.
Rams were treated with melatonin implants in 2 experiments designed to examine the control of reproductive seasonality. In Exp. 1, rams (n = 12) were allocated to 3 treatment groups: 2 groups were treated with 2 melatonin implants per ram for 4 months from 11 November (N) and 9 December (D) and the remaining group was untreated (C). The seasonal increase in luteinizing hormone (LH) pulse frequency and testes size was advanced in Groups N and D. A second seasonal cycle in LH secretion and testes size occurred in Groups N and D after melatonin implants became exhausted. In Exp. 2, rams (n = 20) were allocated to 4 treatment groups: 10 rams were castrated on 6 October and 1 group of entire rams (EM) and one group of castrated rams (CM) were treated with 2 melatonin implants per ram each month from 3 November until 8 January. The other group of entire rams (EC) and castrated rams (CC) was untreated. An increase in LH pulse frequency occurred after castration. Melatonin treatment increased LH pulse frequency in entire rams and reduced LH pulse frequency in castrated rams. The results demonstrated that the advanced reproductive development as a result of treatment with melatonin implants was due to an effect of melatonin on the hypothalamic pulse generator to increase LH pulse frequency. The ability of melatonin to influence LH pulse frequency in entire and castrated rams indicated that an effect of melatonin on the hypothalamic pulse generator is independent of testicular steroids.  相似文献   

9.
Sexually mature Ile-de-France rams were exposed to an 8-month light regimen in which the daily light increment and decrement were constant and equal to 7 min/day. Daylength therefore varied from 6 to 20 h. The animals were allotted to two groups of 12 rams each and submitted to the same light regimen but 4 months out of phase. Blood was collected every 40 min for 10 h, on 15 occasions at various intervals during the second light cycle. Plasma LH and on some occasions plasma testosterone concentrations were measured by radioimmunoassay. In both groups the number of LH pulses increased significantly as daylength increased from 11:40 to 20:00 h (P less than 0.01) but because their amplitude was low the mean plasma LH increase, although significant, was moderate. As daylength started to decrease (from 20:00 to 18:30 h), the frequency of LH pulses further increased (P less than 0.05) and the pulse amplitude doubled so that mean plasma LH values increased abruptly and remained high until the decreasing light photoperiod reached 11:40 h. Thereafter, the frequency and amplitude of LH pulses decreased and the mean plasma LH dropped to one-fourth of its maximal value. Mean plasma testosterone concentrations were low during most of the 8-month cycle but increased steeply when daylength decreased from 11:40 to 6:00 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Nine heifers were pre-synchronized (PGF2α, 12 days) and assigned into three groups with 6 repetitions each: (1) CL (~8 days old, n=13); (2) DIB+CL (n=18); (3) DIB+EB (150 μg of PGF2α and 2mg estradiol benzoate, n=18). After progesterone (P4) device removal (8 days) and/or final PGF2α, heifers were injected with either GnRH or EB in a 3×2 factorial totalling 49 observations (5 were excluded). The blood sampling schedule: every 12 h during P4 period; for LH pulse frequency on Days 3-5, every 15 min for 6 h during P4 period; after P4 removal and EB treatment, samples were collected every 3 h for 24 h or after GnRH every 1 h for 10 h. Ovarian follicle number and diameter were evaluated by ultrasonography every 12 h until the last blood sample and then 24 h and 48 h later. After device insertion (12 h), the DIB+CL group had a lesser LH concentration than the DIB+EB group. After 36 h, all DIB+CL-treated heifers had less LH than CL-heifers, and after 60 h, the DIB+EB group had less LH than the CL-group. Considering all P4 groups combined, LH peak amplitude was greater after GnRH compared to EB treatment but total area of LH peak amplitude and time to first peak was less. The CL-group had fewer follicles and a greater largest follicle diameter than DIB+CL and DIB+EB groups. When treated with EB, the DIB+CL group had a lesser ovulation rate at 24 h than the CL- and DIB+EB-groups. Fixed time artificial insemination (FTAI) protocols promoted a pre-ovulatory LH peak, independent of previous exposure to the DIB coupled with a CL or not. The progesterone excess interfered with FSH and LH secretion, follicular development and ovulation within 24 h.  相似文献   

11.
The ability of passive immunization against testosterone to increase sex steroid binding levels in plasma and thus to overcome the negative feedback of oestradiol-17 beta (E2) on LH secretion in underfed heifers was investigated. Dairy heifers were ovariectomized and divided in 3 groups: high energy diet (H group, n = 4), low energy diet (L group, n = 3) and low energy diet + E2 implants (LE2 group, n = 4). Twenty-four h before injection of bovine immunoglobulins, the mean concentrations of LH were not different between H and L groups. LH baseline was lower (0.8 vs 1.1 ng/ml, P less than 0.03) and the median number of LH pulses was higher (10 vs 5, P less than 0.03) in H than in L group. E2 markedly decreased (P less than 0.01) the mean and basal concentrations of LH (0.27 ng/ml), and number of LH pulses (0) in the LE2 group (P less than 0.05). After injection of anti-testosterone immunoglobulins in the L group, mean and basal LH concentrations tended to decrease. The median number of LH pulses in the L group rose 8 days after immunization (5 vs 7 on day -1 and day +8, P less than or equal to 0.05). Amplitude of pulses tended to decrease after injection (P = 0.08). In the LE2 group, the mean concentration and baseline of LH were not affected by passive immunization against testosterone, while pulses of LH appeared at day +1 and rose (P = 0.07) at day +8 after immunization with 3.5 pulses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Groups of adult photosensitive male yellow-throated sparrows were subjected to different intermittent light cycles viz. 2L/2D, 3L/3D, 4L/4D, 8L/8D and 12L/12D besides two control groups held on 8L/16D and 18L/6D photoperiodic treatments. Testicular growth occurred in 2L/2D, 3L/3D, 4L/4D and 18L/6D but not in 8L/16D, 12L/12D and 8L/16D photoperiodic regimes. The results of this experiment can be interpreted on the basis of circadian rhythm in photosensitivity in an avian external coincidence model. Our findings suggest that multiple light flashes are more effective than a single broad pulse of light of equal duration.  相似文献   

13.
The temporal relationships between plasma concentrations of prolactin, thyroxine (T4) and triiodothyronine (T3) were determined in a group of six wild mallard drakes during the development and maintenance of long-day refractoriness after transfer from 6 h light: 18 h darkness (6L:18D) to 20L:4D for 24 weeks. As shown by changes in the plasma concentrations of luteinizing hormone (LH) and testosterone, the birds came into breeding condition and then became long-day refractory within 5 weeks of photostimulation. Long-day refractoriness was maintained for the remainder of the study. Plasma prolactin began to increase immediately after photostimulation, although not as fast as the increases in plasma LH and testosterone. The concentration of plasma T4 also increased after photostimulation but, as shown by decreased plasma LH and testosterone levels, only after the birds had become long-day refractory. The development of long-day refractoriness was thus directly correlated with an increased plasma prolactin and not with a change in plasma concentration of T4. Plasma T3 decreased after photostimulation but returned to prestimulation values as the birds became long-day refractory and remained stable for the remainder of the study. Concentrations of plasma T4 and prolactin returned to baseline values after about 15 weeks photostimulation showing that the long-term maintenance of long-day refractoriness is not directly related to continuously high plasma concentrations of either hormone.  相似文献   

14.
The effects of artificial photoperiod, temperature, and long-term testosterone treatment on testicular luteinizing hormone (LH) binding were studied in adult male Djungarian hamsters. In hamsters transferred to long-day (LD; 16 hr light, 8 hr dark) photoperiod 8 weeks after adaptation in short-day (SD; 8 hr light, 16 hr dark) photoperiod of 25 degrees C, testicular growth was associated with an increase in the total LH binding per two testes and a decrease in LH binding per unit testicular weight. Plasma testosterone levels reached a peak 47 days after transfer to LD and tended to decrease thereafter, while the testes continued growing. In contrast, when hamsters reared under LD conditions at 25 degrees C for 12 weeks were transferred to SD, testicular regression was associated with a decrease in plasma testosterone and the total LH binding per two testes and an increase in LH binding per unit testicular weight. A significant decrease in LH binding per unit weight compared to SD controls was observed in those hamsters exposed to SD with continuous testosterone treatment. The testosterone treatment tended to induce decrease in the total LH binding. Scatchard plot analyses of the binding suggested that changes in LH binding were due to changes in the number of binding sites. When sexually mature male hamsters were subjected for 8 weeks to two different ambient temperatures (7 degrees C and 25 degrees C) and photoperiods (LD and SD), the difference between the two temperature groups was statistically not significant regarding the weights of testes, epididymides, and prostates; plasma testosterone levels; and LH binding in either LD or SD group. These results suggest that photoperiod is a more important environmental factor than temperature for the regulation of testicular activity and LH receptors and that testosterone reduces the number of LH receptors per unit testicular weight in adult male Djungarian hamsters.  相似文献   

15.
A. DAWSON 《Ibis》1994,136(3):335-340
The effects of daylength and of testosterone implants, before and after the beginning of moult, on the timing and rate of primary moult have been quantified. Female Starlings Sturnus vulgaris were moved from natural daylength in February to 13 h or 18 h of light per day (13L: 11D or 18L: 6D). Some of the birds on 18L: 6D were left on 18L: 6D throughout the experiment and others were transferred to 13L: 11D after 6 weeks, before moult had begun, or after 12 weeks, after moult had begun. Birds kept on 18L: 6D began to moult before birds kept on 13L: 11D, but the subsequent rate of moult was the same in both groups. A decrease in daylength before moult started slightly advanced the onset of moult. A decrease after moult had begun increased the speed of moult. Castrated male Starlings on 18L: 6D were given testosterone implants for different periods before or after the beginning of moult. Testosterone treatment which ended before moult would normally have started had little effect. Treatment extending beyond the normal start of moult considerably delayed or even prevented the onset of moult. Moult was arrested in birds which received testosterone after moult had begun. On removal of testosterone implants, moult began again from the point where it had stopped, but in some birds, all of the feathers which had been regrown recently were dropped again and regrown. These results are discussed in relation to the different patterns of moult seen amongst different species.  相似文献   

16.
This study analyzed photoperiodic sensitivity of brahminy myna (Sturnus pagodarum), which is a seasonally breeding bird species. During regression phase of the reproductive cycle (in early September), groups of myna were exposed to artificial photoperiods that were either close to or longer than those brahminy myna experiences at this time in wild at 29 degrees N. Following a 14-week exposure to such photoperiods (hours of light: hours of darkness; 13L:11D, 12L:12D, 11.5L:12.5D and 11L:13D), the birds were subjected to a longer day length (16L:8D) for another 9 weeks to test whether pre-treatment with varying photoperiods had an effect on subsequent long day photostimulation. There was a progressive increase in body mass under different pre-treatment photoperiods, with a faster increase in 11L:13D and 11.5L:12.5D than in 12L:12D and 13L:11D. When subjected to 16L: 8D, however, all groups showed decline in body mass. By contrast, the testes were not stimulated under 11L:13D and 11.5L:12.5D, and only one individual of the groups under 12L:12D and 13L: 11D showed a small testis recrudescence. All birds except one individual of the 13L:11D group, however, showed testis recrudescence when subjected to 16L:8D. These results suggest that body mass and testes have a different profile of photoperiodic response and appear to have two different threshold photoperiods for dissipating the post-reproductive refractoriness.  相似文献   

17.
In the present study, we asked the question whether physiological responses to day length of migratory redheaded bunting (Emberiza bruniceps) and nonmigratory Indian weaver bird (Ploceus philippinus) are mediated by the daily rhythm of melatonin. Melatonin was given either by injection at certain times of the day or as an implant. In series I experiments on the redheaded bunting, melatonin was administered by subcutaneous injections daily at zeitgeber time (ZT) 4 (morning) or ZT10 (evening) and by silastic capsules in photosensitive unstimulated buntings that were held in natural day lengths (NDL) at 27 degrees N beginning from mid February, and in artificial day lengths (ADL, 12L:12D and 14L:10D). Melatonin did not affect the photoperiod-induced cycles of gain and loss in body mass and testicular growth-involution, but there was an effect on temporal phasing of the growth-involution cycle of testes in some groups. For example, the rate of testicular growth and development was faster in birds that received melatonin injection at ZT4 in NDL, and was slower in birds that carried melatonin implants both in NDL and ADL. In series II experiments on Indian weaver birds, melatonin was given in silastic capsules in the first week of September when they still had large gonads. Birds were exposed for 12 weeks to short day length (8L:16D; group 1), to long day length (eight weeks of 16L:8D and four weeks of 18L:6D; group 2), or to both short and long day lengths (four weeks each of 8L:16D, 16L:8D, and 18L:6D; groups 3 and 4). Whereas groups 1 to 3 carried melatonin or empty implant from the beginning, group 4 received one after four weeks. All birds underwent testicular regression during the first four weeks irrespective of the photoperiod they were exposed to or the implant they carried in, and there was a slight re-initiation of testis growth in some birds during the next eight weeks of long day lengths. However, with the exception of group 2, there was no difference in mean testis volume during the period of experiment between the melatonin- and empty-implant birds. The data on androgen-dependent beak color also supported the observations on testes. Together, these results do not support the idea that the daily rhythm of melatonin is involved in the photoperiodic time measurement in birds. However, there may still be a role of melatonin in temporal phasing of the annual reproductive cycle in birds.  相似文献   

18.
Progestagens are widely used to synchronise oestrous in sheep but the effects on follicular dynamics are not clear. We tested the hypothesis that when luteolysis occurs early during progestagen synchronisation prolonged growth of the ovulatory follicle will occur. Cyclic ewe lambs (40.0+/-0.3 kg) were divided into three groups: eight ewes (Long group) received a progestagen sponge (60 mg medroxyprogesterone acetate) from Days 5 to 19 after oestrous and eight ewes (Short group) received a progestagen sponge on Day 5 which was replaced on Day 10 and again on Day 15, and removed on Day 19 after oestrous. On Days 6 and 7, ewes in both groups received prostaglandin. A third group (n=5, Control) did not receive any treatment. The growth and development of follicles > or =2 mm in diameter were characterised using daily transrectal ultrasonography. On Day 18, blood samples were collected every 12 min for 8 h from five ewes in the Long and Short groups. Data were analysed by ANOVA. The maximum diameter and age (emergence to ovulation) of the ovulatory follicle was greater (P<0.01) in ewes in the Long group (7. 4+/-0.2 mm and 12.1+/-0.6 days) than in ewes in the Short group (6. 3+/-0.2 mm and 5.1+/-0.5 days) and Control group (6.3+/-0.4 mm and 6. 8+/-0.6 days). On Day 18 of the cycle, LH pulse frequency and oestradiol concentrations were greater (P<0.05) in ewes in the Long group (3.2+/-1.1 pulse per 8 h and 1.15+/-0.09 pg ml(-1)) than the Short group (0.8+/-0.4 pulses per 8 h and 0.54+/-0.08 pg ml(-1)).We suggest that the negative feedback efficacy of a long-term progestagen sponge decreased with time and led to an increase in LH pulse frequency and prolonged growth of the ovulatory follicle. We conclude that, in the absence of luteal progesterone, synchronisation with a single progestagen sponge for 14 days resulted in higher LH pulse frequency and ovulation of a persistent follicle with a larger maximum diameter, compared with controls.  相似文献   

19.
The effects of extremely low-frequency (ELF) magnetic fields on sex hormones of adult female Spague-Dawley rats were investigated. Adult female rats were exposed to a 50 Hz sinusoidal magnetic field at approximately 25 microT (rms) for 18 weeks before they returned to their normal life with unexposed counterparts. Serum level of Luteinizing Hormone (LH), Follicle Stimulating Hormone (FSH), progesterone, and estrogen were measured before, after, and during the exposure. Body and uterine weights were not affected by the field. A significant reduction in absolute and relative ovarian weights in exposed rats was observed when compared with sham-exposed controls (P < 0.05). The reduction in the levels of gonadotropins (FSH and LH) was significant after six weeks of exposure (P < 0.005). FSH levels were affected only on week 6 of exposure while LH remained affected during at 12 and 18 weeks (P < 0.05). Interestingly, no significant effects were found at 6 and 12 weeks after removing the field. The level of progesterone and estrogen was significantly decreased after 12 weeks of exposure (P < 0.05), while no other effects on progesterone level was observed during exposure or after removing the exposure. The level of estrogen was also significantly reduced at 12 weeks after removing the field (P < 0.05). These results suggest possible adverse effect on mammalian fertility and reproduction. The effects of ELF-MF on sex hormones were shown to be partly reversible.  相似文献   

20.
The response of rams and ewes of three breeds to artificial photoperiod   总被引:1,自引:0,他引:1  
Rams and ewes of the Romney Marsh (N = 6), Dorset Horn (N = 8) and Australian Merino (N = 8) breeds were subjected to 4 successive periods of alternating 6 h light/18 h dark ('short' days) and 18 h light/6 h dark ('long' days) preceded by 16 weeks of 12 h light/12 h dark. The initial period was of 32 weeks (16 weeks 'short' days; 16 weeks 'long' days) and the next 3 were of 24 weeks (12 weeks 'short' days; 12 weeks 'long' days). Rams of all breeds showed a cyclic pattern of growth and regression of testes associated with plasma testosterone concentration, influenced by the change in light regimen 15-19 weeks previously. Sexual behaviour was also cyclic but lagged by some 6-7 weeks. The changes were greatest in the Romneys and least in the Merinos in which a higher degree of sexual activity was evident even when the testes were regressed (P less than 0.001). This was the major breed difference. All ewes of the Romney and Dorset breeds showed marked seasonality related to the imposed light regimen, whereas only 1 of the 4 Merinos did so. The mean peak of ovarian activity in the former 2 breeds coincided with that of maximum sexual activity of rams housed with them; that is, some 6 weeks after maximum scrotal volume. The rams and ewes were subjected to serial blood sampling episodes for plasma LH and testosterone and tested for plasma LH release following GnRH administration. There was little variation between breeds in LH concentration. Testosterone concentration varied greatly in the ram, highest levels associated with the developed phase of the testes and with maximum LH pulse frequency. The LH response to GnRH changed with respect to the state of the gonads. Maximal responses were observed in the developing phase of testicular growth although this variation was greater in the Romney and Dorsets than in the Merinos (P less than 0.001). In the ewes, maximal responses were seen in the follicular phase (P less than 0.001), with no difference between the luteal and acyclic phases. There were no breed differences. Plasma pooled from the serial blood sampling episodes was assayed for prolactin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号