首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2010,45(4):507-513
The extracellular laccase produced by the ascomycete Trichoderma atroviride was purified and characterized and its ability to transform phenolic compounds was determined. The purified laccase had activity towards typical substrates of laccases including 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), dimethoxyphenol (2,6-DMP), syringaldazine and hydroquinone. The enzyme was a monomeric protein with an apparent molecular mass of 80 kDa and an isoelectric point of 3.5. The pH optima for the oxidation of ABTS and 2,6-DMP were 3 and 5, respectively, and the optimum temperature was 50 °C with 2,6-DMP. The laccase was stable at slightly acidic pH (4 and 5). It retained 80% of its activity after 4 h incubation at 40 °C. Under standard assay conditions, Km values of the enzyme were 2.5 and 1.6 mM towards ABTS and 2,6-DMP, respectively. This enzyme was able to oxidize aromatic compounds present in industrial and agricultural wastewater, as catechol and o-cresol, although the transformation of chlorinated phenols required the presence of ABTS as mediator.  相似文献   

2.
We isolated the feather-degrading Bacillus pseudofirmus FA30-01 from the soil sample of poultry farm. The isolate completely degraded feather pieces after liquid culture at 30°C (pH 10.5) for 3 days. Strain FA30-01 is a Gram-positive, spore-forming, rod-shaped bacterium and was identified with B. pseudofirmus based on 16S rDNA analysis. The keratinase enzyme produced by strain FA30-01 was refined using ammonium sulfate precipitation, negative-ion DEAE Toyopearl exchange chromatography, and hydroxyapatite chromatography. The refinement level was 14.5-fold. The molecular weight of this enzyme was 27.5 kDa and it had an isoelectric point of 5.9. The enzyme exhibited activity at pH 5.1–11.5 and 30–80°C with azokeratin as a substrate, although the optimum pH and temperature for keratinase activity were pH 8.8–10.3 and 60°C, respectively. This enzyme is one of the serine-type proteases. Subtilisin ALP I and this enzyme had 90% homology in the N-terminal amino acid sequence. Since this enzyme differed from ALP I in molecular weight, heat resistance and isoelectric point, they are suggested to be different enzymes.  相似文献   

3.
One thermostable endoglucanase (CMCase) was purified to homogeneity from the culture supernatant of a new isolated thermophilic bacterium Caldibacillus cellulovorans. The molecular weight of the enzyme was 85.1 kDa as determined by SDS Polyacrylamide gel electrophoresis (PAGE) and 174 kDa by size-exclusion chromatography. The isoelectric point of the enzyme was at pH 4.12. The temperature for maximum activity was 80 °C, with half-lives of 32 min at 80 °C, and 2 min at 85 °C, and 83% activity remaining after 3 h at 70 °C. Thermostability of the enzyme was increased twofold by the addition of bovine serum albumin. Maximal activity was observed between pH 6.5 and 7.0. The enzyme activity was significantly inhibited by Zn2+, Hg2+, and p-chloromercuribenzenesulphonic acid. The enzyme showed high activity on carboxymethylcellulose (CMC) with much lower activity on Avicel; a low level of activity was also found against xylan. Cellobiose was the major product of hydrolysis of amorphous cellulose and CMC. Viscometric analysis indicated that the enzyme hydrolysed CMC in an exo-acting fashion. Cellotriose and cellobiose were not degraded and at least four contiguous glucosyl residues were necessary for degradation by the enzyme. The K m and V max of the enzyme for CMC were 3.4 mg ml–1 and 44.7 mol min–1 (mg protein)–1, respectively.  相似文献   

4.
5.
Alkaline protease (EC 3.4.21.14) activity, suitable for use in detergents, was detected in the alkaline culture medium of Bacillus sp. KSM-K16, which was originally isolated from soil. The enzyme, designated M protease, was purified to homogeneity from the culture broth by column chromatographies. The N-terminal amino acid sequence was Ala-Gln-Ser-Val-Pro-Trp-Gly-Ile-Ser-Arg-Val-Gln-Ala-Pro-Ala-Ala-His-Asn-Arg-Gly-Leu-Thr-Gly. The molecular mass of the protease was 28 kDa, and its isoelectric point was close to pH 10.6. Maximum activity toward casein was observed at 55°C and at pH 12.3 in 50 mM phosphate/NaOH buffer. The activity was inhibited by phenylmethylsulfonyl flouride and chymostatin. The enzyme was very stable in long-term incubation with liquid detergents at 40°C. The enzyme cleaved the oxidized insulin B chain initially at Leu15-Tyr16 and efficiently at ten more sites. Among various oligopeptidyl p-nitro-anilides (pNA) tested, N-succinyl-Ala-Ala-Pro-Phe-pNA was efficiently hydrolyzed by M protease. M protease was precipitated in (NH4)2SO4-saturated acetate buffer (pH 5.0) as plank-like cyrstals.  相似文献   

6.
A thermostable superoxide dismutase (SOD) from a Thermomyces lanuginosus strain (P134) was purified to homogeneity by fractional ammonium sulfate precipitation, ion-exchange chromatography on DEAE-Sepharose, Phenyl-Sepharose hydrophobic interaction chromatography, and gel filtration on Sephacryl S-100. The molecular mass of a single band of the enzyme was estimated to be 22.4 kDa, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using gel filtration on Sephacryl S-100, the molecular mass was estimated to be 89.1 kDa, indicating that this enzyme was composed of four identical subunits of 22.4 kDa each. The SOD was found to be inhibited by NaN3, but not by KCN or H2O2, suggesting that the SOD in T. lanuginosus was of the manganese superoxide dismutase type. The SOD exhibited maximal activity at pH 7.5. The optimum temperature for the activity was 55°C. It was thermostable at 50 and 60°C and retained 55% activity after 60 min at 70°C. The half-life of the SOD at 80°C was approximately 28 min and even retained 20% activity after 20 min at 90°C.  相似文献   

7.
A 43 kDa α-amylase was purified from Tinospora cordifolia by glycogen precipitation, ammonium sulfate precipitation, gel filtration chromatography, and HPGPLC. The enzyme was optimally active in pH 6.0 at 60 °C and had specific activity of 546.2 U/mg of protein. Activity was stable in the pH range of 4-7 and at temperatures up to 60 °C. PCMB, iodoacetic acid, iodoacetamide, DTNB, and heavy metal ions Hg2+ > Ag+ > Cd2+ inhibited enzyme activity while Ca2+ improved both activity and thermostability. The enzyme was a thiol amylase (3 SH group/mole) and DTNB inhibition of activity was released by cysteine. N-terminal sequence of the enzyme had poor similarity (12-24%) with those of plant and microbial amylases. The enzyme was equally active on soluble starch and amylopectin and released maltose as the major end product.  相似文献   

8.
Alkaline proteinase was purified from Bacillussp. isolated from soil. The pH optimum was 11.5 at 37°C. Calcium divalent cation was effective in stabilizing the enzyme, especially at higher temperatures. The proteolytic activity was inhibited by the specific serine proteinase inhibitor PMSF (phenylmethylsulfonyl fluoride), and ions of Mg, Mn, Pb, Li, Zn, Ag, and Hg. The enzyme was stable in the presence of detergents, such as Triton-X100, Tween-80, SDS (sodium dodecyl sulfate), and EDTA (ethylenediaminetetraacetic acid), at pH 11.5 and 37°C for 30 min. The optimum pH was 11.5 at 37°C, and the optimum temperature was 62°C at pH 11.5.  相似文献   

9.
An enzyme was purified from the pyloric caecum of tambaqui (Colossoma macropomum) through heat treatment, ammonium sulfate fractionation, Sephadex® G-75 and p-aminobenzamidine-agarose affinity chromatography. The enzyme had a molecular mass of 23.9 kDa, NH2-terminal amino acid sequence of IVGGYECKAHSQPHVSLNI and substrate specificity for arginine at P1, efficiently hydrolizing substrates with leucine and lysine at P2 and serine and arginine at P1′. Using the substrate z-FR-MCA, the enzyme exhibited greatest activity at pH 9.0 and 50 °C, whereas, with BAPNA activity was higher in a pH range of 7.5-11.5 and at 70 °C. Moreover, the enzyme maintained ca. 60% of its activity after incubated for 3 h at 60 °C. The enzymatic activity significantly decreased in the presence of TLCK, benzamidine (trypsin inhibitors) and PMSF (serine protease inhibitor). This source of trypsin may be an attractive alternative for the detergent and food industry.  相似文献   

10.
An extracellular, thermostable, alkaline lipase was partially purified from a thermophilic Bacillus strain J 33. It was optimally active at pH 8.0 at 60°C, retaining 50% activity at 70°C for 30 min. It had native molecular mass of 45 kDa. The lipase was stable in 90% (v/v) hexane or benzene mixtures in water. It converted 66% oleic acid at 0.25 M with 0.4 M methanol in hexane to methyl oleate at 60°C in 16 h. Activity was stimulated by Mg2 (10 mM) but inhibited by EDTA (10 mM) and PMSF (10 mM). It was stable in Triton X-100, Tween 20 and Tween 80 (0.1% v/v). © Rapid Science Ltd. 1998  相似文献   

11.
Arylsulfatase from Artemia salina exists in at least two forms (AS I and AS II). The paper presents characterization of the AS II form of the arylsulfatase. The enzyme was able to hydrolyze p-nitrocatechol sulfate (pNCS) as well as ascorbate sulfate. It exhibited maximum activity at temperature of 50 °C and was stable for 2 h at 4-10 °C. Optimum pH shifted from 6.2 at 4 mM pNCS (substrate) to 4.8 at 20 mM pNCS. The enzyme displayed linear kinetics. AS II arylsulfatase exists in two molecular forms (349 and 460 kDa) composed of identical subunits with molecular mass of 53 kDa. Sulfite and phosphate ions were the most potent inhibitors of the enzyme. Cyanide proved to be a weak inhibitor. Sulfate and low concentrations of silver ions had no effect on the enzyme activity. Based on the above results, modifications in the assay for determination of enzyme activity are proposed.  相似文献   

12.
The present work describes the purification and characterization of a novel extracellular polygalacturonase, PGase I, produced by Pycnoporus sanguineus when grown on citrus fruit pectin. This substrate gave enhanced enzyme production as compared to sucrose and lactose. PGase I is an exocellular enzyme releasing galacturonic acid as its principal hydrolysis product as determined by TLC and orcinol-sulphuric acid staining. Its capacity to hydrolyze digalacturonate identified PGase I as an exo-polygalacturonase. SDS-PAGE showed that PGase I is an N-glycosidated monomer. The enzyme has a molecular mass of 42 kDa, optimum pH 4.8 and stability between pH 3.8 and 8.0. A temperature optimum was observed at 50–60 °C, with some enzyme activity retained up to 80 °C. Its activation energy was 5.352 cal mol−1. PGase I showed a higher affinity towards PGA than citric pectin (Km = 0.55 ± 0.02 and 0.72 ± 0.02 mg ml−1, respectively). Consequently, PGase I is an exo-PGase, EC 3.2.1.82.  相似文献   

13.
Xylanases of marine fungi of potential use for biobleaching of paper pulp   总被引:1,自引:0,他引:1  
Microbial xylanases that are thermostable, active at alkaline pH and cellulase-free are generally preferred for biobleaching of paper pulp. We screened obligate and facultative marine fungi for xylanase activity with these desirable traits. Several fungal isolates obtained from marine habitats showed alkaline xylanase activity. The crude enzyme from NIOCC isolate 3 (Aspergillus niger), with high xylanase activity, cellulase-free and unique properties containing 580 U l–1 xylanase, could bring about bleaching of sugarcane bagasse pulp by a 60 min treatment at 55°C, resulting in a decrease of ten kappa numbers and a 30% reduction in consumption of chlorine during bleaching. The culture filtrate showed peaks of xylanase activity at pH 3.5 and pH 8.5. When assayed at pH 3.5, optimum activity was detected at 50°C, with a second peak of activity at 90°C. When assayed at pH 8.5, optimum activity was seen at 80°C. The crude enzyme was thermostable at 55°C for at least 4 h and retained about 60% activity. Gel filtration of the 50–80% ammonium sulphate-precipitated fraction of the crude culture filtrate separated into two peaks of xylanase with specific activities of 393 and 2,457 U (mg protein)–1. The two peaks showing xylanase activity had molecular masses of 13 and 18 kDa. Zymogram analysis of xylanase of crude culture filtrate as well as the 50–80% ammonium sulphate-precipitated fraction showed two distinct xylanase activity bands on native PAGE. The crude culture filtrate also showed moderate activities of -xylosidase and -l-arabinofuranosidase, which could act synergistically with xylanase in attacking xylan. This is the first report showing the potential application of crude culture filtrate of a marine fungal isolate possessing thermostable, cellulase-free alkaline xylanase activity in biobleaching of paper pulp.  相似文献   

14.
A 17-kilodalton (kDa) human placental acid phosphatase was purified 21,400-fold to homogeneity. The enzyme has an isoelectric point of pH 7.2 and a specific activity of 106 mumol min-1 mg-1 using p-nitrophenyl phosphate as a substrate at pH 5 and 37 degrees C. This placental acid phosphatase showed activity toward phosphotyrosine and toward phosphotyrosyl proteins. The pH optima of the enzyme with phosphotyrosine and with phosphotyrosyl band 3 (from human red cells) were between pH 5 and 6 and pH 5 and 7, respectively. The Km for phosphotyrosine was 1.6 mM at pH 5 and 37 degrees C. Phosphotyrosine phosphatase activity was not inhibited by tartrate or fluoride, but vanadate, molybdate, and zinc ions acted as strong inhibitors. Enzyme activity was also inhibited by DNA, but RNA was not inhibitory. It is a hydrophobic nonglycoprotein containing approximately 20% hydrophobic amino acids. The average hydrophobicity was calculated to be 903 cal/mol. The absorption coefficient at 280 nm, E1% 1cm, was determined to be 5.7. The optical ellipticity of the enzyme at 222 nm was -5200 deg cm2 dmol-1, which would correspond to a low helical content. Free sulfhydryl and histidine residues were necessary for the enzyme activity. The enzyme contained four reactive sulfhydryl groups. Chemical modification of the sulfhydryls with iodoacetate resulted in unfolding of the protein molecule as detected by fluorescence emission spectroscopy. Antisera against both the native and the denatured protein were able to immunoprecipitate the native enzyme. However, upon denaturation, the acid phosphatase lost about 70% of the antigenic determinants. Both antisera cross-reacted with a single 17-kDa polypeptide on immunoblotting.  相似文献   

15.
Blue multicopper oxidases, laccases displayed on the surface of Bacillus spores were used to decolorize a widely used textile dyestuff, indigo carmine. The laccase-encoding gene of Bacillus subtilis, cotA, was cloned and expressed in B. subtilis DB104, and the expressed enzyme was spontaneously localized on Bacillus spores. B. subtilis spores expressing laccase exhibited maximal activity for the oxidation of 2,2′-azino-bis (3-ethylthiazoline-6-sulfonate) (ABTS) at pH 4.0 and 80 °C, and for the decolorization of indigo carmine at pH 8.0 and 60 °C. The displayed enzyme retained 80% of its original activity after pre-treatment with organic solvents such as 50% acetonitrile and n-hexane for 2 h at 37 °C. The apparent Km of the enzyme displayed on spores was 443 ± 124 μM for ABTS with a Vmax of 150 ± 16 U/mg spores. Notably, 1 mg of spores displaying B. subtilis laccase (3.4 × 102 U for ABTS as a substrate) decolorized 44.6 μg indigo carmine in 2 h. The spore reactor (0.5 g of spores corresponding to 1.7 × 105 U in 50 mL) in a consecutive batch recycling mode decolorized 223 mg indigo carmine/L to completion within 42 h at pH 8.0 and 60 °C. These results suggest that laccase displayed on B. subtilis spores can serve as a powerful environmental tool for the treatment of textile dye effluent.  相似文献   

16.
Summary An extracellular neutral protease, of Bacillus stearothermophilus KP 1236 (a soil isolate) able to grow at 39°–71°C was purified to homogeneity. The molecular weight, sedimentation coefficient in water at 20°C, and isoelectric point were estimated as 33,000, 3.46 S and 7.5, respectively. The enzyme was most active at 80°C and pH 7.0. The activity was stable for 10 min up to 80°C at pH 7.5 and for 18 h at 60°C over pH 6.0–8.8. The enzyme and thermolysin (microbial metalloproteinase, EC 3.4.24.4) shared their antigenic determinants in part.Presented at the Annual Meeting of the Agricultural Chemical Society of Japan on Sapporo, July 30, 1985 (Abstracts, p. 333)  相似文献   

17.
A bacterium, Azotobacter chroococcum 4A1M, isolated from a soil sample, produced an alginate-decomposing enzyme in the culture broth. The enzyme was purified to an electrophoretically homogeneous state. The purified enzyme showed maximum activity at pH 6.0 and 60°C;it was stable up to 60°C at pH 6.0 and activated by Ca2+ and inhibited strongly by Hg2+. The molecular mass of the enzyme was estimated to be 23 kDa by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and 24 kDa by gel filtration. Therefore, the enzyme was considered to be monomeric. The NH2-terminal amino acid sequence was determined to be H2N-Ala-Ser-Ile-Ala-Ile-Thr-Asn-Pro-Gly-Phe. The enzyme reacted only on the polymannuronate block of alginic acid, and two main reaction products were obtained when short-chain polymannuronate was used as a substrate. The degrees of polymerization of the two products were three and two respectively.  相似文献   

18.
A newly isolated Bacillus species, which grew optimally at 30°C and pH 10, produced a carboxymethylcellulase in a medium containing 10 g CM-cellulose/l. The enzyme, when partially purified by gel filtration, had a mass of about 29 kDa as determined by both SDS-PAGE and gel filtration chromatography. It was optimally active at pH 9.5 and 40°C, and was stable from pH 7 to 11 at 4°C for 24 h. The enzyme was stimulated by Ca2+ (1mm) but was completely inhibited by Hg2+ (1mm). Neither EDTA nor EGTA (10mm) affected the activity.The author is with the Department of Biological Sciences, University of Jordan. PO Box 2686, Amman 11181, Jordan  相似文献   

19.
Mycelia Sterilia YY-5, an entophytic fungus, was isolated from Rhus chinensis Mill and its extracellular enzyme had a higher laccase activity (MS-Lac). After been purified by anion exchange and gel filtration chromatography, MS-Lac, which had a molecular mass of 45 kDa, was found to be an alkali-stable enzyme with an optimum pH of 10.0 and capable of retaining 80% activity after incubation for 72 h with syringaldazine as substrate. It was also found that syringaldazine had a higher affinity than 2,2′-azino-bis-(3-ethylbenzothiazoline)-6-sulphonate (ABTS) as substrate for MS-Lac, which was determined in sodium phosphate buffer (pH 6.0, 0.1 M) at 30 °C. Meanwhile, the lignin modification, catalyzed by MS-Lac, indicated that it could oxidize the phenolic hydroxyl, side chain substituent or carbonyl group of spruce alkali lignin in cetyltrimethylammonium bromide (CTAB) reversed micelles (20 mM, pH 6.0, W/O = 40) and steam-exploded wheat straw alkali lignin in NaOH solution (20 mM, pH 10.0).  相似文献   

20.
A feruloyl esterase (StFAE-A) produced by Sporotrichum thermophile was purified to homogeneity. The purified homogeneous preparation of native StFAE-A exhibited a molecular mass of 57.0±1.5 kDa, with a mass of 33±1 kDa on SDS-PAGE. The pI of the enzyme was estimated by cation-exchange chromatofocusing to be at pH 3.1. The enzyme activity was optimal at pH 6.0 and 55–60 °C. The purified esterase was stable at the pH range 5.0–7.0. The enzyme retained 70% of activity after 7 h at 50 °C and lost 50% of its activity after 45 min at 55 °C and after 12 min at 60 °C. Determination of k cat/K m revealed that the enzyme hydrolyzed methyl p-coumarate 2.5- and 12-fold more efficiently than methyl caffeate and methyl ferulate, respectively. No activity on methyl sinapinate was detected. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose and it hydrolyzed 4-nitrophenyl 5-O-trans-feruloyl--l-arabinofuranoside (NPh-5-Fe-Araf) 2-fold more efficiently than NPh-2-Fe-Araf. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with xylanase from S. thermophile (a maximum of 34% total ferulic acid released after 1 h incubation). StFAE-A by itself could release FA, but at a level almost 47-fold lower than that obtained in the presence of xylanase. The potential of StFAE-A for the synthesis of various phenolic acid esters was tested using a ternary water-organic mixture consisting of n-hexane, 1-butanol and water as a reaction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号