首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B Dozin  H J Cahnmann  V M Nikodem 《Biochemistry》1985,24(19):5197-5202
Photoaffinity labeling of rat liver nuclear extract with underivatized thyroid hormones was performed after incubation with 1 nM [3',5'-125I]thyroxine ([125I]T4) or [3'-125I]triiodothyronine [( 125I]T3) by irradiation with light above 300 nm. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the covalently photolabeled nuclear extract revealed four distinct hormone binding proteins of molecular masses 96, 56, 45, and 35 kilodaltons (kDa), respectively. Distribution of the hormone among these proteins was similar for T4 and T3. The 56- and 45-kDa proteins were the most prominently labeled. The specificity of the photoattachment of thyroid hormones to these nuclear proteins was verified by the irradiation of eight randomly chosen proteins and two proteins known to have thyroid hormone binding sites, human thyroxine binding globulin and bovine serum albumin. Only the latter two were photolabeled with [125I]T4. Competition studies performed by incubating nuclear extracts with [125I]T4 or [125I]T3 in the presence of increasing amounts of the corresponding unlabeled hormone (10-, 100-, and 1000-fold molar excess) demonstrated that (1) photoattachment of labeled T3 or T4 to the 56- and 45-kDa proteins was inhibited by 67-78% and 73-85%, respectively, after incubation with a 1000-fold molar excess of unlabeled hormone, (2) in the presence of lower molar excesses of the corresponding competitor (10- and 100-fold), photoattachment of labeled T3 or T4 to the 56- and 45-kDa receptors was gradually inhibited to a similar extent on both proteins, and (3) the 35- and 96-kDa proteins, although having thyroid hormone binding sites, display lower binding activities since the inhibition of photoattachment of labeled T3 or T4 by a 1000-fold molar excess of unlabeled hormone did not exceed 30-42% and 26-49%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Iodinated thyroglobulin stored in the thyroid follicular lumen is subjected to an internalization process and thought to be transferred into the lysosomal compartment for proteolytic cleavage and thyroid hormone release. In the present study, we have designed in vitro models to study: 1) the transfer of endocytosed thyroglobulin into lysosomes, and 2) the intracellular fate of free thyroid hormones and iodinated precursors generated by intralysosomal proteolysis of thyroglobulin. Open follicles prepared from pig thyroid tissue by collagenase treatment were used to probe the delivery of exogenous thyroglobulin to lysosomes via the differentiated apical cell membrane. Open follicles were incubated with pure [125I]thyroglobulin with or without unlabeled thyroglobulin in the presence or in the absence of chloroquine. Subcellular fractionation on a Percoll gradient showed that [125I]thyroglobulin was internalized and present in low (for the major part) and high density thyroid vesicles. In chloroquine-treated open follicles, we observed the appearance of a definite fraction of [125I]thyroglobulin in a lysosome subpopulation having the expected properties of phagolysosomes or secondary lysosomes. In contrast, in control open follicles, the amount of [125I]thyroglobulin or degradation products found in high density vesicles was lower and associated with the bulk of lysosomes, i.e., primary lysosomes. The content in thyroglobulin and degradation products of lysosomes at steady-state was analyzed by Western blot using polyclonal anti-pig thyroglobulin antibodies. Under reducing conditions, immunoreactive thyroglobulin species correspond to polypeptides with molecular weights ranging from 130,000 to less than 20,000. The presence of free thyroid hormones and iodotyrosines inside lysosomes and their intracellular fate was studied in dispersed thyroid cells labeled with [125I]iodide. Neo-iodinated [125I]thyroglobulin gave rise to free [125I]T4 which was secreted into the medium. In addition to released [125I]T4, a fraction of free [125I]T4 was identified inside the cells. Lysosomes isolated from dispersed thyroid cells did not contain significant amounts of free [125I]T4. The free intracellular [125I]T4 fraction seems to represent an intermediate 'hormonal pool' between thyroglobulin-bound T4 and secreted T4. Evidence for such a precursor-product relationship was obtained from pulse-chase experiments. In conclusion: 1) open thyroid follicles have the ability to internalize thyroglobulin by a mechanism of limited capacity and to address the endocytosed ligand to lysosomes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The role of the sympathetic nervous system in the control of the goitrogenic response was examined in adult male rats subjected to unilateral superior cervical ganglionectomy 12-30 days earlier. A spontaneous goiter as well as an increased thyroid growth after the administration of the goitrogenic agents methylmercaptoimidazole and thyrotropic stimulating hormone (TSH) were found in the ipsilateral lobe. Norepinephrine and epinephrine content decreased significantly by 80 and 31%, and thyroxine (T4) and triiodothyronine (T3) content by 24 and 15%, in the ipsilateral lobe. After the injection of a tracer dose of 125I, percent radioactivity incorporation to diiodotyrosine (DIT) was higher, and that to monoiodotyrosine (MIT) lower, in the ipsilateral lobe; additionally a lower ratio "labeled T3 + T4/labeled DIT" was found in the denervated thyroid lobe. These results suggest that the sympathetic nerve terminals in the thyroid gland modulate the organ's response to circulating TSH.  相似文献   

4.
Previous work from our laboratory has shown that 14-iodo-15-hydroxy-5,8,11-eicosatrienoic acid (I-HO-A) is a potent inhibitor of iodine organification in calf thyroid slices. The present studies were performed in order to clarify the mechanism of this action. Incubation of thyroid slices with 10(-4)M I-HO-A caused a 47 and 53% decrease in PB125I formation after 30 and 60 min incubation, respectively. In a series of experiments an inverse relationship between the degree of inhibition caused by I-HO-A and total iodine content and basal iodoprotein formation was observed. Chromatographic analysis of the labeled compounds showed a significant decrease in 125I incorporation into MIT, DIT, T3 and total iodolipid. The site of the inhibitory effect of I-HO-A was then sought. TPO was measured by three different methods. When TPO was solubilized from I-HO-A treated slices, no change in enzymatic activity was observed. Moreover, the same lack of action was found when solubilized TPO was incubated with I-HO-A. The production and release of H2O2 into the incubation medium was measured by chemiluminiscence technique. In control slices the values increased during the first 10 min and reached a plateau. Pretreatment of the slices with 10(-4)M KI caused a 51% inhibition, while the same concentration of I-HO-A produced a 59% inhibition. The possibility that I-HO-A might exert its action through a putative protein inhibitor was also explored. Incubation of slices with 10(-5)M I-HO-A caused a 46% decrease in PB125I formation and addition of actinomycin D or puromycin failed to alter this effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The kinetic and equilibrium characteristics of interaction of thyroxine (T4) and its structural analogs with a high density lipoprotein (HDL) fraction isolated from human serum by T4-Sepharose affinity chromatography and containing apolipoprotein A-I (apo A-I) as a sole protein component, were studied. The binding of [125I]T4 to apo A-I-HDL reached a maximum after 40 min and did not change during the next 80 min of incubation at 0 degrees--22 degrees C. Dissociation of [125I]T4 induced by the addition of excess unlabeled T4 to the complex solution proceeded more intensely on a time scale at 0--2 degrees C than at 22 degrees C. Incubation of apo A-I-HDL with increasing concentrations of T4 showed that the binding is saturable. The data analysis using different computer programs revealed the presence in apo A-I-HDL of a single class of binding sites with K alpha = (4.0 +/- 2.1).10(-7) M- and Bmax = 1.7 +/- 0.8 nmol T4/mg of protein. Naturally occurring iodothyronines, their analogs and D-isomers of thyroid hormones competed with [125I]T4 for the binding sites on apo A-I-HDL with the following inhibitory potencies: L-T4 = D-T4 greater than or equal to 3,3',5-triiodo-L-thyronine = 3,3',5-triiodo-D-thyronine greater than 3,5-diiodo-L-thyronine = 3,3',5- triiodothyroacetic acid greater than 3,3',5-triiodothyropropionic acid greater than or equal to 3,5-diiodo-L-thyrosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The early events in the interaction of (125I)-Tyr27-beta-endorphin with human polymorphonuclear leucocytes were investigated. Using ultrastructural autoradiography we found that the labeled peptide specifically bound to the plasma membrane and was internalized within two minutes of incubation at 37 degrees C. Both processes could be inhibited by unlabeled beta-endorphin or by the opiate antagonist diprenorphine. This finding was confirmed by radioreceptorassays. With longer incubation times the specific association of the labeled beta-endorphin with the cells decreased. About 10% of the tracer was degraded within 10 min of incubation as shown by gel chromatography. The morphological changes induced by 125I-beta-endorphin in the granulocytes were investigated under the microscope. The labeled peptide had the same biological effect as unlabeled beta-endorphin.  相似文献   

7.
1. The incorporation in vitro of [(32)P]phosphate into phospholipids and RNA and of [(125)I]iodide into protein-bound iodine by pig thyroid slices incubated for up to 6hr. was studied. The subcellular distribution of the labelled products formed after incubation with radioactive precursor in the nuclear, mitochondrial, smooth-microsomal, rough-microsomal and cell-sap fractions was also studied. 2. Pig thyroid slices actively took up [(32)P]phosphate from the medium during 6hr. of incubation; the rate of incorporation of (32)P into phospholipids was two to five times that into RNA. 3. The uptake of [(125)I]iodide by the slices from the medium was rapid for 4hr. of incubation, 6-10% of the label being incorporated into iodoprotein. 4. Much of the (32)P-labelled phospholipid accumulated in mitochondria and microsomes, whereas the nuclear fraction contained most of the (32)P-labelled RNA. After 2hr. of incubation most of the (32)P-labelled cytoplasmic RNA accumulated in the rough-microsomal fraction. The major site of localization of proteinbound (125)I was the smooth-microsomal fraction, and gradually increasing amounts appeared in the soluble cytoplasm fraction, suggesting a vectorial discharge of [(125)I]iodoprotein (presumably thyroglobulin) from smooth vesicles into the colloid. 5. The addition of 0.1-0.4 unit of thyrotrophic hormone/ml. of incubation medium markedly enhanced the accumulation of (32)P-labelled phospholipids in the microsomal fractions and to a much smaller extent that of (32)P-labelled RNA without any increase in the total uptake of the label. Almost simultaneously the hormone increased the uptake of [(125)I]iodide by the slices and enhanced the accumulation of protein-bound (125)I in the smooth-microsomal fraction. 6. As a function of time of incubation, thyrotrophic hormone had a biphasic effect on [(125)I]iodide uptake and protein-bound (125)I formation, the stimulatory effect being reversed after 4hr. of incubation. 7. 6-N-2'-O-Dibutyryl-3',5'-(cyclic)-AMP, but not 3',5'-(cyclic)-AMP or 5'-AMP, mimicked the action of thyrotrophic hormone on iodine uptake as well as on iodination of protein. On the other hand, the mimicry by 6-N-2'-O-dibutyryl-3',5'-(cyclic)-AMP of the stimulatory effect of thyrotrophic hormone on the formation of labelled thyroid phospholipids and RNA was only an apparent one resulting from an enhanced uptake of [(32)P]phosphate. 8. It is concluded that thyrotrophic hormone causes a co-ordinated increase in the formation or accumulation of phospholipids, RNA and iodoprotein associated with the endoplasmic reticulum, and that 6-N-2'-O-dibutyryl-3',5'-(cyclic)-AMP mimics the more rapid effects of thyrotrophic hormone on transport and metabolic functions of thyroid cells, but does not influence their slower biosynthetic responses to the hormone.  相似文献   

8.
Thrombospondin was purified from human platelets and labeled with 125I, and its metabolism was quantified in cell cultures of human embryonic lung fibroblasts. 125I-Thrombospondin bound to the cell layer. The binding reached an apparent steady state within 45 min. Trichloroacetic acid-soluble radioactivity was detected in the medium after 30 min of incubation; the rate of degradation of 125I-thrombospondin was linear for several hours thereafter. Degradation of 125I-thrombospondin was saturable. The apparent Km and Vmax for degradation at 37 degrees C were 6 X 10(-8) M and 1.4 X 10(5) molecules per cell per minute, respectively. Degradation was inhibited by chloroquine or by lowering the temperature to 4 degrees C. Experiments in which cultures were incubated with thrombospondin for 45 min and then incubated in medium containing no thrombospondin revealed two fractions of bound thrombospondin. One fraction was localized by indirect immunofluorescence to punctate structures; these structures were lost coincident with the rapid degradation of 50-80% of bound 125I- thrombospondin. The second fraction was localized to a trypsin- sensitive, fibrillar, extracellular matrix. 125I-Thrombospondin in the matrix was slowly degraded over a period of hours. Binding of 125I- thrombospondin to the extracellular matrix was not saturable and indeed was enhanced at thrombospondin concentrations greater than 3 X 10(-8) M. The ability of 125I-thrombospondin to bind to extracellular matrix was diminished tenfold by limited proteolytic cleavage with trypsin. Degradation of trypsinized 125I-thrombospondin was also diminished, although to a lesser extent than matrix binding. Heparin inhibited both degradation and matrix binding. These results suggest that thrombospondin may play a transitory role in matrix formation and/or organization and that specific receptors on the cell surface are responsible for the selective removal of thrombospondin from the extracellular fluid and matrix.  相似文献   

9.
A high-affinity heparin subfraction accounting for 8% of whole heparin from bovine lung was isolated by low-density lipoprotein (LDL)-affinity chromatography. When compared to whole heparin, the high-affinity subfraction was relatively higher in molecular weight (11,000 vs. 17,000) and contained more iduronyl sulfate as hexuronic acid (76% vs. 86%), N-sulfate ester (0.75 vs. 0.96 mol/mol hexosamine), and O-sulfate ester (1.51 vs. 1.68 mol/mol hexosamine). Although both heparin preparations formed insoluble complexes with LDL quantitatively in the presence of 30 mM Ca2+, the concentrations of NaCl required for 50% reduction in maximal insoluble complex formation was markedly higher with high-affinity subfraction (0.55 M vs. 0.04 M). When compared to complex of 125I-LDL and whole heparin (H-125I-LDL), complex of 125I-LDL and high-affinity heparin subfraction (HAH-125I-LDL) produced marked increase in the degradation of lipoproteins by macrophages (7-fold vs. 1.4-fold over native LDL, after 5 h incubation) as well as cellular cholesteryl ester synthesis (16.7-fold vs. 2.2-fold over native LDL, after 18 h incubation) and content (36-fold vs. 2.7-fold over native LDL, after 48 h incubation). After a 5 h incubation, macrophages accumulated 2.3-fold more cell-associated radioactivity from HAH-125I-LDL complex than from [125I]acetyl-LDL. While unlabeled HAH-LDL complex produced a dose-dependent inhibition of the degradation of labeled complex, native unlabeled LDL did not elicit any effect even at a 20-fold excess concentration. Unlabeled particulate LDL aggregate competed for 33% of degradation of labeled complex; however, cytochalasin D, known inhibitor of phagocytosis, did not effectively inhibit the degradation of labeled complex. Unlabeled acetyl-LDL produced a partial (33%) inhibition of the degradation of labeled complex. These results indicate that (1) the interaction of high-affinity heparin subfraction with LDL leads to scavenger receptor mediated endocytosis of the lipoprotein, and stimulation of cholesteryl ester synthesis and accumulation in the macrophages; and (2) with respect to macrophage recognition and uptake, HAH-LDL complex was similar but not identical to acetyl-LDL. These observations may have implications for atherogenesis, because both mast cells and endothelial cells can synthesize heparin in the arterial wall.  相似文献   

10.
The importance of plasma HDL apolipoprotein concentration as a predictor of atherosclerotic risk is well recognized, yet the processes of HDL modification and degradation in various cells are not clearly understood. We examined the characteristics of HDL1 apolipoprotein degradation and cellular uptake by rat adipocytes and determined the effects of fasting on these processes. Epididymal and perirenal adipocytes were isolated from male Wistar rats (310 +/- 4 g) fed ad libidum and incubated with 5 micrograms of rat 125I-labeled HDL1 (d: 1.07-1.10 g/mL) mL-1 for 2 h at 37 degrees C. Cellular uptake of HDL1 was calculated as the trichloroacetic acid precipitable radioactivity associated with adipocytes following incubation. Intracellular and medium degradation of HDL1 were determined as trichloroacetic acid soluble 125I counts associated with cells and measured in the postincubation medium, respectively. Fifty to sixty percent of cellular uptake and degradation of HDL1 was inhibited by the addition of 25-fold excess unlabeled HDL. HDL1 degradation measured in the medium was 10- to 12-fold greater than cellular uptake of HDL1 apolipoproteins. Intracellular degradation of HDL1 was negligible. The presence of EDTA in the incubation medium reduced HDL1 degradation measured in the medium, but enhanced HDL1 cellular uptake. Conditioned medium separated from cells after 2 h of incubation at 37 degrees C in the absence of HDL and subsequently incubated with 125I-labeled HDL1 for an additional 2 h at 37 degrees C, degraded less than 5% of HDL compared with degradation in the presence of cells. These results suggest that rat adipocytes degrade, or modify, HDL1 particles, possibly by interactions with cell surface proteases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effect of sialylated TBG and desialylated TBG on thyroxine (T4) uptake by human peripheral mononuclear cells was investigated in vitro. [125I]-T4 uptake was observed when the cells were incubated with free [125I]-T4. The uptake was inhibited in a concentration dependent manner when TBG was added. During the incubation, [125I]-T4 binding to TBG was observed. [125I]-T4 incorporation into cells was also observed when the cells were incubated with [125I]-T4-sialylated TBG or with [125I]-T4-desialylated TBG complex. The uptake was related to the temperature and length of time of the incubation. The amount of [125I]-T4 incorporated into the cells incubated with [125I]-T4-sialylated TBG was greater than that into the cells incubated with [125I]-T4-desialylated TBG during the early 0-20 min. incubation, whereas the amount of [125I]-T4 incorporated into the cells incubated with [125I]-T4-desialylated TBG became greater than that into the cells incubated with [125I]-T4-sialylated TBG after 20 min. of incubation. Pretreatment of the cells with methylamine blocked [125I]-T4 uptake in both cases, i.e. incubated with [125I]-T4-sialylated TBG and incubated with [125I]-T4-desialylated TBG. The results suggest that TBG plays a role not only as a carrier protein for T4 in circulation but also as a protein which can transport T4 from the extracellular into the intracellular space, so that the mechanism of T4 transport mediated by desialylated TBG is different from that mediated by sialylated TBG, and that the T4 transport system in both cases, mediated by sialylated TBG and by desialylated TBG, may be related to the internalization of T4-TBG-TBG receptor complex or of T4-T4 receptor complex if TBG receptors are present in the outer surface of the cell membrane.  相似文献   

12.
Binding and endocytosis of heparin by human endothelial cells in culture   总被引:8,自引:0,他引:8  
Binding of heparin and low molecular weight heparin fragments (CY 222, Mr range 1500-8000) to human vascular endothelial cells was studied. Primary culture of human umbilical vein endothelial cells and either 125I or 3H-labeled heparin or [125I]CY 222 were used. Slow, saturable and specific binding was found. No other tested glycosaminoglycan, excepting a highly sulfated heparan fraction, was able to compete for heparin binding. Two groups of binding sites for [3H]heparin could be distinguished: one with high affinity (Kd = 0.12 microM) and another with lower affinity (Kd = 1.37 microM) and a relative large capacity of binding (1.16 X 10(7) molecules/cell) was calculated. The Kd for unlabeled heparin, as calculated from competition experiments, was 0.23 microM. Much lower affinity was calculated for unlabeled low molecular weight heparin fragments CY 222 (Kd = 4.3 microM) from competition experiments with [125I]CY 222. The binding reversibility was only partial for unfractionated heparin. Even by chasing with unlabeled compound, a fraction of 25-30% was not dissociable from endothelial cells. This fraction was much lower if incubation was carried out at 4 degrees C. The addition of basic proteins (histones) to the incubation medium greatly enhanced the undissociable binding at 37 degrees C, but not at 4 degrees C. The undissociable fraction of heparin was not available to degradation by purified microbial heparinase. These results suggest that a fraction of bound heparin is internalized by the vascular endothelium.  相似文献   

13.
Acetylated-low density lipoprotein (Ac-LDL) is taken up by macrophages and endothelial cells via the "scavenger cell pathway" of LDL metabolism. In this report, aortic and microvascular endothelial cells internalized and degraded 7-15 times more [125I]-Ac-LDL than did smooth muscle cells or pericytes. Bound [125I]-Ac-LDL was displaced by unlabeled Ac-LDL, but not unmodified LDL. The ability to identify endothelial cells based on their increased metabolism of Ac-LDL was examined using Ac-LDL labeled with the fluorescent probe 1,1'- dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (Dil-Ac- LDL). When cells were incubated with 10 micrograms/ml Dil-Ac-LDL for 4 h at 37 degrees C and subsequently examined by fluorescence microscopy, capillary and aortic endothelial cells were brilliantly fluorescent whereas the fluorescent intensity of retinal pericytes and smooth muscle cells was only slightly above background levels. Dil-Ac-LDL at the concentration used for labeling cells had no effect on endothelial cell growth rate. When primary cultures of bovine adrenal capillary cells were labeled with 10 micrograms/ml of Dil-Ac-LDL for 4 h at 37 degrees C, then trypsinized and subjected to fluorescence-activated cell sorting, pure cultures of capillary endothelial cells could be obtained. Utilizing this method, large numbers of early passage microvascular endothelial cells can be obtained in significantly less time than with conventional methods.  相似文献   

14.
Reactive aldehydes can be formed during the oxidation of lipids, glucose, and amino acids and during the nonenzymatic glycation of proteins. Low density lipoprotein (LDL) modified with malondialdehyde are taken up by scavenger receptors on macrophages. In the current studies we determined whether alpha-hydroxy aldehydes also modify LDL to a form recognized by macrophage scavenger receptors. LDL modified by incubation with glycolaldehyde, glyceraldehyde, erythrose, arabinose, or glucose (alpha-hydroxy aldehydes that possess two, three, four, five, and six carbon atoms, respectively) exhibited decreased free amino groups and increased mobility on agarose gel electrophoresis. The lower the molecular weight of the aldehyde used for LDL modification, the more rapid and extensive was the derivatization of free amino groups. Approximately 50-75% of free lysine groups in LDL were modified after incubation with glyceraldehyde, glycolaldehyde, or erythrose for 24-48 h. Less extensive reductions in free amino groups were observed when LDL was incubated with arabinose or glucose, even at high concentration for up to 5 days. LDL modified with glycolaldehyde and glyceraldehyde labeled with (125)I was degraded more extensively by human monocyte-derived macrophages than was (125)I-labeled native LDL. Conversely, LDL modified with (125)I-labeled erythrose, arabinose, or glucose was degraded less rapidly than (125)I-labeled native LDL. Competition for the degradation of LDL modified with (125)I-labeled glyceraldehyde was nearly complete with acetyl-, glycolaldehyde-, and glyceraldehyde-modified LDL, fucoidin, and advanced glycation end product-modified bovine serum albumin, and absent with unlabeled native LDL.These results suggest that short-chain alpha-hydroxy aldehydes react with amino groups on LDL to yield moieties that are important determinants of recognition by macrophage scavenger receptors.  相似文献   

15.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

16.
Biodegradation of endocrine-disrupting bisphenol A was investigated with several white rot fungi (Irpex lacteus, Trametes versicolor, Ganoderma lucidum, Polyporellus brumalis, Pleurotus eryngii, Schizophyllum commune) isolated in Korea and two transformants of T versicolor (strains MrP 1 and MrP 13). I. lacteus degraded 99.4% of 50 mg/l bisphenol A in 3 h incubation and 100% in 12 h incubation. which was the highest degradation rate among the fungal strains tested. T. versicolor degraded 98.2% of 50 mg/l bisphenol A in 12 h incubation. Unexpectedly, the transformant of the Mn-repressed peroxidase gene of T. versicolor, strain MrP 1, degraded 76.5% of 50 mg/l bisphenol A in 12 h incubation, which was a lower degradation rate than wild-type T. versicolor. The removal of bisphenol A by I. lacteus occurred mainly by biodegradation rather than adsorption. Optimum carbon sources for biodegradation of bisphenol A by I. lacteus were glucose and starch, and optimum nitrogen sources were yeast extract and tryptone in a minimal salts medium; however, bisphenol A degradation was higher in nutrient-rich YMG medium than that in a minimal salts medium. The initial degradation of endocrine disruptors was accompanied by the activities of manganese peroxidase and laccase in the culture  相似文献   

17.
Metabolism of high-density lipoproteins in cultured rat luteal cells   总被引:1,自引:0,他引:1  
The uptake of cholesterol from high-density lipoproteins (HDL) labeled with 125I and [3H]cholesterol was examined in cultured rat luteal cells. Luteal cells were incubated with labeled HDL, following which the metabolic fate of the apolipoproteins and cholesterol moieties of the receptor-bound HDL were examined. About 50% of the originally bound HDL apolipoproteins were released into the medium in 24 h by a temperature-dependent process while only 5% of the HDL cholesterol was released unmetabolized. Inclusion of unlabeled HDL in the chase incubation resulted in increased release of apolipoprotein-derived radioactive products without significant change in the release of unmetabolized cholesterol. 60% of the apolipoprotein-derived radioactivity could be precipitated with trichloroacetic acid; the remaining trichloroacetic acid-soluble radioactive fraction was identified as [125I]iodotyrosine. Gel filtration chromatography of the chase-released material showed that the trichloroacetic acid-precipitable products, which contained no detectable amounts of cholesterol, eluted over a range of molecular sizes (9-80 kDa). No intact HDL was retroendocytosed. About 80% of trichloroacetic acid-precipitable products could be immunoadsorbed on anti-apolipoprotein A-I antibody immobilized on CNBr-activated Sepharose, suggesting the presence of fragments containing apolipoprotein A-I. This material was also capable of reassociating with native HDL. Lysosomal inhibitors were partially effective in inhibiting the amount of trichloroacetic acid-soluble products formed. The lysosomal degradation appeared to have no role in the uptake of HDL-derived cholesterol. These studies demonstrate preferential and total uptake of HDL cholesterol by luteal cells, with concomitant degradation of the lipoprotein.  相似文献   

18.
We studied binding and degradation of labeled platelet thrombospondin (TSP) by normal and variant bovine aorta endothelial (BAE) cells. [125I]-labeled TSP bound to cells at 37 degrees C in a specific, saturable, and time-dependent fashion. Incubation of cell monolayers with fluoresceinated TSP resulted in punctate cellular staining, but no staining of the extracellular matrix. Heparin, fucoidan, chondroitin sulfate, platelet factor 4, beta-thromboglobulin, unlabeled TSP, and serum derived from whole blood all competed for binding of [125I]TSP. [125I]TSP was degraded to TCA-soluble radioactivity, which appeared in the medium after a 60-90-min lag. Degradation was inhibited to the same extent as binding by increasing concentrations of heparin, fucoidan, platelet factor 4, or whole blood serum. Normal BAE cells bound and degraded less [125I]TSP than variant BAE cells. The dissociation constants (Kds) for binding and the constants for degradation (Kms) for degradation by the two cell strains, however, were similar (30-50 nM). The inhibitory effects of heparin and platelet factor 4 were lost when the two inhibitors were present in a 1:1 (wt/wt) ratio. Treatment of suspended cells with trypsin or heparitinase caused less binding of TSP. These results indicate that there is a specific receptor for TSP on endothelial cells which mediates binding and degradation. This receptor may be a heparan sulfate proteoglycan.  相似文献   

19.
The regulation of growth hormone gene expression by thyroid hormone in cultured GH1 cells is mediated by a chromatin-associated receptor. We have previously described a photoaffinity label derivative of 3,5,3'-triiodo-L-thyronine (L-T3) in which the alanine side chain was modified to form N-2-diazo-3,3,3-trifluoropropionyl-L-T3 (L-[125I]T3-PAL). On exposure to 254 nm UV light, L-[125I]T3-PAL generates a carbene which covalently modifies two thyroid hormone receptor forms in intact GH1 cells; an abundant 47,000 Mr species and a less abundant 57,000 Mr form. We have now synthesized similar photoaffinity label derivatives of 3,5,3',5'-tetraiodo-L-thyronine (L-T4) and 3,3',5'-triiodo-L-thyronine (L-rT3). Both compounds identify the same receptor forms in intact cells and in nuclear extracts in vitro as L-[125I]T3-PAL. Labeling by L-[125I]rT3-PAL was low and consistent with the very low occupancy of receptor by L-rT3. Underivatized L-[125I]T3 and L-[125I]T4 labeled the same receptor forms at 254 nm but at a markedly lower efficiency than their PAL derivatives. In contrast, N-bromoacetyl-L-[125I]T3, a chemical affinity labeling agent, did not derivatize either receptor form in vitro. The relative efficiency of coupling to receptor at 254 nm was L-[125I]T4-PAL greater than L-[125I]T3-PAL greater than L-[125I]T4 greater than L-[125I]T3. Although L-[125I]T4-PAL has a lower affinity for receptor than L-[125I]T3-PAL, its coupling efficiency was 5-10-fold higher. This suggests that the alanine side chain of L-[125I]T4-PAL is positioned in the ligand binding region near a residue which is efficiently modified by photoactivation. With L-[125I]T4-PAL we were able to identify three different molecular weight receptor species in human fibroblast nuclei.  相似文献   

20.
The relative degree of 125-I labelling of thyroglobulin-- bound mono-iodotyrosine (MIT) and di-iodotyrosine (DIT) in isolated, cultured human thyroid cells has been compared following exposure of 125-I supplemented cells to 100 mU/ml of bovine thyrotropin (TSH) or 1.0 mM dibutyryl cyclic AMP (dBcAMP) for 96 hours. Pronase digestion of the lysed cells and Sephadex G-10 fractionation of the digested lysates revealed a predominance of [125-I]MIT over [125-I]DIT in both sets of experimental cells as well as in controls. Levels of [125-I]DIT, however, were only enhanced above control values in cells incubated with TSH. These findings suggest that an increase in availability of intracellular iodide, following cellular exposure to TSH, may facilitate a preferential synthesis of DIT relative to that of MIT. This theory offers an explanation for the differential effects of TSH and dibutyryl cyclic AMP on the levels of newly--synthesised T4 recovered from the cells used in this study, and from the culture medium in a previous investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号