首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletal abnormalities in neurofibromatosis type 1 syndrome (NF1) are observed in ~50% of patients. Here, we describe the phenotype of Nf1Ocl mouse model with Nf1‐deficient osteoclasts. Nf1Ocl mice with Nf1+/? or Nf1?/? osteoclasts in otherwise Nf1+/+ background were successfully generated by mating parental Nf1flox/flox and TRAP‐Cre mice. Contrary to our original hypothesis, osteoporotic or fragile bone phenotype was not observed. The µCT analysis revealed that tibial bone marrow cavity, trabecular tissue volume, and the perimeter of cortical bone were smaller in Nf1 mice compared to Nf1 control mice. Nf1 mice also a displayed narrowed growth plate in the proximal tibia. In vitro analysis showed increased bone resorption capacity and cytoskeletal changes including irregular cell shape and abnormal actin ring formation in Nf1?/? osteoclasts. Surprisingly, the size of spleen in Nf1 mice was two times larger than in controls and histomorphometric analysis showed splenic megakaryocytosis. In summary, Nf1Ocl mouse model presented with a mild but specific bone phenotype. This study shows that NF1‐deficiency in osteoclasts may have a role in the development of NF1‐related skeletal abnormalities, but Nf1‐deficiency in osteoclasts in Nf1+/+ background is not sufficient to induce skeletal abnormalities analogous to those observed in patients with NF1. J. Cell. Biochem. 113: 2136–2146, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
p21(ras) (Ras) proteins and GTPase-activating proteins (GAPs) tightly modulate extracellular growth factor signals and control multiple cellular functions. The specific function of each Ras isoform (H, N, and K) in regulating distinct effector pathways, and the role of each GAP in negatively modulating the activity of each Ras isoform in myeloid cells and, particularly, mast cells is incompletely understood. In this study, we use murine models of K-ras- and Nf1-deficient mice to examine the role of K-ras in modulating mast cell functions and to identify the role of neurofibromin as a GAP for K-ras in this lineage. We find that K-ras is required for c-kit-mediated mast cell proliferation, survival, migration, and degranulation in vitro and in vivo. Furthermore, the hyperactivation of these cellular functions in Nf1(+/-) mast cells is decreased in a K-ras gene dose-dependent fashion in cells containing mutations in both loci. These findings identify K-ras as a key effector in multiple mast cell functions and identify neurofibromin as a GAP for K-ras in mast cells.  相似文献   

3.
Mutations of tumor suppressor Nf1 gene deregulate Ras-mediated signaling, which confers the predisposition for developing benign or malignant tumors. Inhibition of protein kinase C (PKC) was shown to be in synergy with aberrant Ras for the induction of apoptosis in various types of cancer cells. However, it has not been investigated whether loss of PKC is lethal for Nf1-deficient cells. In this study, using HMG (3-hydroxy-3-methylgutaryl, a PKC inhibitor), we demonstrate that the inhibition of PKC by HMG treatment triggered a persistently mitotic arrest, resulting in the occurrence of mitotic catastrophe in Nf1-deficient ST8814 cells. However, the introduction of the Nf1 effective domain gene into ST8814 cells abolished this mitotic crisis. In addition, HMG injection significantly attenuated the growth of the xenografted ST8814 tumors. Moreover, Chk1 was phosphorylated, accompanied with the persistent increase of cyclin B1 expression in HMG-treated ST8814 cells. The knockdown of Chk1 by the siRNA prevented the Nf1-deficient cells from undergoing HMG-mediated mitotic arrest as well as mitotic catastrophe. Thus, our data suggested that the suppression of PKC activates the Chk1-mediated mitotic exit checkpoint in Nf1-deficient cells, leading to the induction of apoptosis via mitotic catastrophe. Collectively, the study indicates that targeting PKC may be a potential option for developing new strategies to treat Nf1-deficiency-related diseases.  相似文献   

4.
Mutations of the neurofibromin 1 gene cause neurofibromatosis type 1, a disease in which learning and behavioral abnormalities are common. The disease is completely penetrant but shows variable phenotypic expression in patients. The repertoire of regulatory interactions utilized by neurons to control neurofibromin 1 expression is poorly understood. Here, we examined the contribution of microRNAs into this regulatory network. Using reporter assays, we provided evidence that miR-128 and to a lesser extent miR-137 and miR-103 reduced neurofibromin 1 reporter levels through specific binding to Nf1 3′-UTR. Mutations in all three predicted binding sites eliminated the reporter response. MiR-128 and miR-137, unlike miR-103 that showed a more ubiquitous expression, were predominantly expressed in brain with a distribution that resembled neurofibromin 1 expression in different tissues as well as during the course of neuronal development. In the nervous system, all three microRNAs showed highest expression in neurons and least in Schwann cells and astrocytes. Overexpression of miR-128 alone or with miR-103 and miR-137 significantly reduced endogenous neurofibromin 1 protein levels, while antisense inhibition of these microRNAs enhanced translation of endogenous neurofibromin 1 and reporter in primary cultures of hippocampal neurons. These findings revealed a significant additional mechanism by which neurofibromin 1 is regulated in neurons and implicated new candidates for the treatment of multifarious neurofibromatosis type 1 cognitive symptoms.  相似文献   

5.
Elevated insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) mRNA in senescent human mammary epithelial cells suggested that the IGFBP-3 gene product may inhibit cell proliferation. To test this hypothesis, we used a retroviral vector to express IGFBP-rP1 cDNA in the IGFBP-rP1-deficient MCF-7 breast cancer cell line. Compared with control vector-transduced cells, cumulative cell numbers for IGFBP-rP1-transduced polyclonal or clonal cell cultures were reduced by 39 and 74%, respectively, after 1 week. Medium conditioned by IGFBP-rP1-producing cultures reduced cumulative cell numbers in parental MCF-7 cultures by 20% compared with medium from cultures of a control vector-transduced cell line. Nuclear fragmentation analysis and cell proliferation assays completed in the presence of the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone excluded apoptosis as the responsible mechanism. The percentage of cells containing senescence-associated beta-galactosidase activity was doubled compared with control cell cultures. Flow cytometry analysis indicated that twice as many noncycling cells were present in the IGFBP-rP1-transduced MCF-7 cell cultures compared with controls. These findings indicate that IGFBP-rP1 is an inhibitor of MCF-7 breast cancer cell proliferation and may act via a cellular senescence-like mechanism.  相似文献   

6.
Benton R  St Johnston D 《Cell》2003,115(6):691-704
PAR-1 kinases are required for polarity in diverse cell types, such as epithelial cells, where they localize laterally. PAR-1 activity is believed to be transduced by binding of 14-3-3 proteins to its phosphorylated substrates, but the relevant targets are unknown. We show that PAR-1 phosphorylates Bazooka/PAR-3 on two conserved serines to generate 14-3-3 binding sites. This inhibits formation of the Bazooka/PAR-6/aPKC complex by blocking Bazooka oligomerization and binding to aPKC. In epithelia, this complex localizes apically and defines the apical membrane, whereas Bazooka lacking PAR-1 phosphorylation/14-3-3 binding sites forms ectopic lateral complexes. Lateral exclusion by PAR-1/14-3-3 cooperates with apical anchoring by Crumbs/Stardust to restrict Bazooka localization, and loss of both pathways disrupts epithelial polarity. PAR-1 also excludes Bazooka from the posterior of the oocyte, and disruption of this regulation causes anterior-posterior polarity defects. Thus, antagonism of Bazooka by PAR-1/14-3-3 may represent a general mechanism for establishing complementary cortical domains in polarized cells.  相似文献   

7.
The NF1 tumor suppressor gene encodes neurofibromin, a GTPase-activating protein (GAP) for p21ras (Ras). Children with NF1 are predisposed to juvenile myelomonocytic leukemia (JMML). Some heterozygous Nf1 mutant mice develop a similar myeloproliferative disorder (MPD), and adoptive transfer of Nf1-deficient fetal liver cells consistently induces this MPD. Human JMML and murine Nf1-deficient cells are hypersensitive to granulocyte-macrophage colony-stimulating factor (GM-CSF) in methylcellulose cultures. We generated hematopoietic cells deficient in both Nf1 and Gmcsf to test whether GM-CSF is required to drive excessive proliferation of Nf1-/- cells in vivo. Here we show that GM-CSF play a central role in establishing and maintaining the MPD and that recipients engrafted with Nf1-/- Gmcsf-/- hematopoietic cells are hypersensitive to exogenous GM-CSF.  相似文献   

8.
W. H. Marshall  R. M. Newton  W. Sprague 《CMAJ》1973,108(11):1381-1384
Blood leukocytes from a patient with T-cell immunodeficiency failed to respond to stimulation with phytohemagglutinin (PHA) in vitro although ample lymphocytes were present. Leukocytes from this patient were mixed in various proportions with normal leukocytes, and the mixtures were stimulated with PHA and cultured for three days. There was no restoration of PHA responsiveness of the patient''s cells in the presence of normal cells. This would indicate that the defect in the patient''s cell population was not due to the absence of any facilitating factor or cooperative function that could be provided by normal T cells or other blood leukocytes. Since in thymic aplasia the patient''s own cells are rapidly restored to normal PHA responsiveness by an unknown facilitating factor after thymic transplantation, we suggest that this mixed-cell culture method might differentiate between patients who need a bone marrow transplant and those who will respond to a thymus transplant.  相似文献   

9.
RhoA, Cdc42, and Rac1 are small GTPases that regulate cytoskeletal reorganization leading to changes in cell morphology and cell motility. Their signaling pathways are activated by guanine nucleotide exchange factors and inactivated by GTPase-activating proteins (GAPs). We have identified a novel RhoGAP, BPGAP1 (for BNIP-2 and Cdc42GAP Homology (BCH) domain-containing, Proline-rich and Cdc42GAP-like protein subtype-1), that is ubiquitously expressed and shares 54% sequence identity to Cdc42GAP/p50RhoGAP. BP-GAP1 selectively enhanced RhoA GTPase activity in vivo although it also interacted strongly with Cdc42 and Rac1. "Pull-down" and co-immunoprecipitation studies indicated that it formed homophilic or heterophilic complexes with other BCH domain-containing proteins. Fluorescence studies of epitope-tagged BPGAP1 revealed that it induced pseudopodia and increased migration of MCF7 cells. Formation of pseudopodia required its BCH and GAP domains but not the proline-rich region, and was differentially inhibited by coexpression of the constitutively active mutant of RhoA, or dominant negative mutants of Cdc42 and Rac1. However, the mutant without the proline-rich region failed to confer any increase in cell migration despite the induction of pseudopodia. Our findings provide evidence that cell morphology changes and migration are coordinated via multiple domains in BPGAP1 and present a novel mode of regulation for cell dynamics by a RhoGAP protein.  相似文献   

10.
Insulin-like growth factor (IGF) binding protein-related protein-1 (IGFBP-rP1) modulates cellular adhesion and growth in an IGF/insulin-dependent or independent manner. It also shows tumor-suppressive activity in vivo. We recently found that a single-chain IGFB-rP1 is proteolytically cleaved to a two-chain form by a trypsin-like, endogenous serine proteinase, changing its biological activities. In this study, we attempted to identify the IGFBP-rP1-processing enzyme. Of nine human cell lines tested, seven cell lines secreted IGFBP-rP1 at high levels, and two of them, ovarian clear cell adenocarcinoma (OVISE) and gastric carcinoma (MKN-45), highly produced the cleaved IGFBP-rP1. Serine proteinase inhibitors effectively blocked the IGFBP-rP1 cleavage in the OVISE cell culture. The conditioned medium of OVISE cells did not cleave purified IGFBP-rP1, but their membrane fraction had an IGFBP-rP1-cleaving activity. The membrane fraction contained an 80-kDa gelatinolytic enzyme, which was identified as the membrane-type serine proteinase matriptase (MT-SP1) by immunoblotting. When the membrane fraction was separated by SDS/PAGE, the IGFBP-rP1-cleaving activity comigrated with matriptase. A soluble form of matriptase purified in an inhibitor-free form efficiently cleaved IGFBP-rP1 at the same site as that found in a naturally cleaved IGFBP-rP1. Furthermore, small interfering RNAs for matriptase efficiently blocked both the matriptase expression and the cleavage of IGBP-rP1 in OVISE cells. These results demonstrate that IGFBP-rP1 is processed to the two-chain form by matriptase on the cell surface.  相似文献   

11.
DHFR-deficient CHO cells are the most commonly used host cells in the biopharmaceutical industry and over the years, individual substrains have evolved, some have been engineered with improved properties and platform technologies have been designed around them.Unexpectedly, we have observed that different DHFR-deficient CHO cells show only poor growth in fed-batch cultures even in HT supplemented medium, whereas antibody producer cells derived from these hosts achieved least 2-3 fold higher peak cell densities. Using a set of different expression vectors, we were able to show that this impaired growth performance was not due to the selection procedure possibly favouring fast growing clones, but a direct consequence of DHFR deficiency. Re-introduction of the DHFR gene reproducibly restored the growth phenotype to the level of wild-type CHO cells or even beyond which seemed to be dose-dependent.The requirement for a functional DHFR gene to achieve optimal growth under production conditions has direct implications for cell line generation since it suggests that changing to a selection system other than DHFR would require another CHO host which - especially for transgenic CHO strains and tailor-suited process platforms - this could mean significant investments and potential changes in product quality. In these cases, DHFR engineering of the current CHO-DG44 or DuxB11-based host could be an attractive alternative.  相似文献   

12.
We have addressed the role of the F-box helicase 1 (Fbh1) protein during genome maintenance in mammalian cells. For this, we generated two mouse embryonic stem cell lines deficient for Fbh1: one with a homozygous deletion of the N-terminal F-box domain (Fbh1f/f), and the other with a homozygous disruption (Fbh1?/?). Consistent with previous reports of Fbh1-deficiency in vertebrate cells, we found that Fbh1?/? cells show a moderate increase in Rad51 localization to DNA damage, but no clear defect in chromosome break repair. In contrast, we found that Fbh1f/f cells show a decrease in Rad51 localization to DNA damage and increased cytoplasmic localization of Rad51. However, these Fbh1f/f cells show no clear defects in chromosome break repair. Since some Rad51 partners and F-box-associated proteins (Skp1-Cul1) have been implicated in progression through mitosis, we considered whether Fbh1 might play a role in this process. To test this hypothesis, we disrupted mitosis using catalytic topoisomerase II inhibitors (bisdioxopiperazines), which inhibit chromosome decatenation. We found that both Fbh1f/f and Fbh1?/? cells show hypersensitivity to topoisomerase II catalytic inhibitors, even though the degree of decatenation stress was not affected. Furthermore, following topoisomerase II catalytic inhibition, both Fbh1-deficient cell lines show substantial defects in anaphase separation of chromosomes. These results indicate that Fbh1 is important for restoration of normal mitotic progression following decatenation stress.  相似文献   

13.
14.
PDK-1 is a protein kinase that is critical for the activation of many downstream protein kinases in the AGC superfamily, through phosphorylation of the activation loop site on these substrates. Cells lacking PDK-1 show decreased activity of these protein kinases, including protein kinase B (PKB) and p70S6K, whereas mTOR activity remains largely unaffected. Here we show, by assessing both association of cellular RNAs with polysomes and by metabolic labeling, that PDK-1-/- embryonic stem (ES) cells exhibit defects in mRNA translation. We identify which mRNAs are most dramatically translationally regulated in cells lacking PDK-1 expression by performing microarray analysis of total and polysomal RNA in these cells. In addition to the decreased translation of many RNAs, a smaller number of RNAs show increased association with polyribosomes in PDK-1-/- ES cells relative to PDK-1+/+ ES cells. We show that PKB activity is a critical downstream component of PDK-1 in mediating translation of cystatin C, RANKL, and Rab11a, whereas mTOR activity is less important for effective translation of these targets.  相似文献   

15.
Normal cell growth in the yeast Saccharomyces cerevisiae involves the selection of genetically determined bud sites where most growth is localized. Previous studies have shown that BEM2, which encodes a GTPase-activating protein (GAP) that is specific for the Rho-type GTPase Rho1p in vitro, is required for proper bud site selection and bud emergence. We show here that DBM1, which encodes another putative Rho-type GAP with two tandemly arranged cysteine-rich LIM domains, also is needed for proper bud site selection, as haploid cells lacking Dbm1p bud predominantly in a bipolar, rather than the normal axial, manner. Furthermore, yeast cells lacking both Bem2p and Dbm1p are inviable. The nonaxial budding defect of dbm1 mutants can be rescued partially by overproduction of Bem3p and is exacerbated by its absence. Since Bem3p has previously been shown to function as a GAP for Cdc42p, and also less efficiently for Rho1p, our results suggest that Dbm1p, like Bem2p and Bem3p, may function in vivo as a GAP for Cdc42p and/or Rho1p. Both LIM domains of Dbm1p are essential for its normal function. Point mutations that alter single conserved cysteine residues within either LIM domain result in mutant forms of Dbm1p that can no longer function in bud site selection but instead are capable of rescuing the inviability of bem2 mutants at 35 degrees C.  相似文献   

16.
Kim JH  Kim JH  Song WK  Kim JH  Chun JS 《IUBMB life》2000,50(2):119-124
We investigated a signaling pathway leading to activation of extracellular signal-regulated protein kinase (Erk) 1 and 2 in Rat-2 cells stimulated with sphingosine 1-phosphate (S1P). S1P treatment transiently activated Erk-1/-2 in a dose-dependent manner, and its activation was blocked by pertussis toxin, expression of RasN17, or inhibition of Raf or MEK-1/-2. S1P-induced activation of Erk-1/-2 was also suppressed by the inhibition of epidermal growth factor (EGF) receptor tyrosine kinase with the specific inhibitor AG1478, suggesting that activation of EGF receptor tyrosine kinase was involved in the signaling pathway. S1P-induced Erk-1/-2 activation was enhanced up to 2-fold by inhibiting protein kinase C (PKC) with GF109203X, and PKC inhibition in the absence of S1P treatment also activated Erk-1/-2. The stimulatory effects of Erk-1/-2 activation by PKC inhibition was blocked by treating cells with AG1478, suggesting the involvement of PKC in the regulation of EGF receptor tyrosine kinase activation that leads to Erk-1/-2 activation. Together, these results suggest that S1P activates the EGF receptor through a PKC-dependent pathway that links Ras signaling to the activation of Erk-1/-2 in Rat-2 cells.  相似文献   

17.
The study presented here investigates the effect of HMGB1 knockout on the sensitivity of mouse embryonic fibroblasts treated with the anticancer drug cisplatin. We evaluated both the growth inhibition by cisplatin and cisplatin-induced cell death in the Hmgb1(-/-) cells and its wild-type counterpart. No significant differences were observed in the responses of these cells to cisplatin, indicating that HMGB1 does not play a significant role in modulating the cellular responses to cisplatin in this context. Since HMGB1 significantly enhances the cytotoxicity of cisplatin in other cells, these results illustrate the importance of cell type in determining the ability of this and probably other cisplatin-DNA-binding proteins to influence the efficacy of the drug.  相似文献   

18.
Constitutional heterozygous loss-of-function mutations in the SPRED1 gene cause a phenotype known as Legius syndrome, which consists of symptoms of multiple café-au-lait macules, axillary freckling, learning disabilities, and macrocephaly. Legius syndrome resembles a mild neurofibromatosis type 1 (NF1) phenotype. It has been demonstrated that SPRED1 functions as a negative regulator of the Ras-ERK pathway and interacts with neurofibromin, the NF1 gene product. However, the molecular details of this interaction and the effects of the mutations identified in Legius syndrome and NF1 on this interaction have not yet been investigated. In this study, using a yeast two-hybrid system and an immunoprecipitation assay in HEK293 cells, we found that the SPRED1 EVH1 domain interacts with the N-terminal 16 amino acids and the C-terminal 20 amino acids of the GTPase-activating protein (GAP)-related domain (GRD) of neurofibromin, which form two crossing α-helix coils outside the GAP domain. These regions have been shown to be dispensable for GAP activity and are not present in p120GAP. Several mutations in these N- and C-terminal regions of the GRD in NF1 patients and pathogenic missense mutations in the EVH1 domain of SPRED1 in Legius syndrome reduced the binding affinity between the EVH1 domain and the GRD. EVH1 domain mutations with reduced binding to the GRD also disrupted the ERK suppression activity of SPRED1. These data clearly demonstrate that SPRED1 inhibits the Ras-ERK pathway by recruiting neurofibromin to Ras through the EVH1-GRD interaction, and this study also provides molecular basis for the pathogenic mutations of NF1 and Legius syndrome.  相似文献   

19.
20.
C Chen  B Wang  J Sun  H Na  Z Chen  Z Zhu  L Yan  S Ren  Y Zuo 《Cell death & disease》2015,6(1):e1602
Despite recent progress in the identification of genetic and molecular alternations in colorectal carcinoma, the precise molecular pathogenesis remains unclear. NALP1 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 1) is a member of the nucleotide-binding oligomerization domain-like receptor family of proteins that are key organization proteins in the inflammasome. It is reported that NALP1 plays a central role in cell apoptosis, pyroptosis, inflammatory reactions and autoimmune diseases. DAC (5-aza-2-deoxycytidine) is an antitumor drug useful to lung cancer, myelodysplastic disorders, myelodysplasia and acute myeloid leukemia. In this study, we examined the expression of NALP1 in human normal and cancerous colon tissues using tissue microarray, western blot and quantitative real-time PCR and we measured the expression of NALP1 in three kinds of colon cancer cell lines and animal models before and after treatment with DAC. Furthermore, we examined the treatment effects of DAC on colon cancer in our animal model. Our data indicate that NALP1 is expressed low in human colorectal tumoral tissues relative to paratumoral tissues and was associated with the survival and tumor metastasis of patients. The expression of NALP1 increased after treatment with DAC both in vitro and in vivo. Furthermore, DAC suppressed the growth of colon cancer and increased lifespan in mouse model. Therefore, we conclude that NALP1 is expressed low in colon cancer and associated with the survival and tumor metastasis of patients, and treatment with DAC can restore NALP1 levels to suppress the growth of colon cancer.Colorectal cancer is one of the most common forms of fatal cancer in the world,1 yet the molecular mechanisms underlying its growth are poorly understood.2 Intestinal epithelial cells play an important role in the innate defense of the intestine, and impairment of epithelial functions can result in inflammatory bowel diseases (IBD)3, 4, 5, 6 such as ulcerative colitis. Epidemiological studies in patients with IBD have clearly identified chronic active inflammation as a major risk factor for colon adenocarcinoma.7, 8, 9 Although colitis-associated colorectal cancers (CACs) comprise <5% of all colorectal cancers,10 the cumulative incidence of CAC in patients with ulcerative colitis 25–30 years after diagnosis ranges from 8 to 43%, accounting for one-sixth of all deaths in this group.11 Treatment with nonsteroidal anti-inflammatory therapy reduces the risk of cancer in ulcerative colitis patients by 40–50% and reduces the risk of developing polyps in patients with familial adenomatous.12, 13 The data suggest that anti-inflammatory therapy with nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the risk of CAC.14The NALP1 (nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 1) protein, which contains a pyrin domain at its NH3 terminus and a CARD (caspase recruitment domain-containing protein) domain at its COOH terminus, has attracted recent interest in the field of CAC. NALP1 (also called CARD7 or NAC) is the first NALP-family protein to be discovered by its sequence homology to APAF-1 (apoptotic protease-activating factor-1) and has been implicated in cell responses to apoptotic and inflammatory stimuli. NALP1 is a multidomain scaffold protein that contains an N-terminal pyrin domain (PYD) followed by a centrally located NACHT domain, five tandem LRR domains, a FIIND (domain with function to find) domain and a C-terminal CARD domain.15 NALP1 protein is believed to interact with APAF-1 to subsequently enhance apoptosis and/or activate the proinflammatory caspases in conjunction with ASC (apoptosis-associated speck-like protein containing a CARD). ASC is an essential component of the inflammasome and connects NALP1 to caspase-1. The PYD of ASC interacts with the PYD of NALP1, and the CARD of ASC recruits the CARD of procaspase-1. Furthermore, NALP1 has been implicated in cell pyroptosis, a newly discovered form of programmed cell death.16The 5-aza-2-deoxycytidine (DAC) is a DNA methylation inhibitor that has found use as an antitumor drug in mammary cancer,17 non-small-cell lung cancer,18 rhabdomyosarcoma and medulloblastoma.19 At low doses, DAC can exert durable antitumor effects without cytotoxicity both in vitro and in vivo.18, 20Recent articles have focused on the role of NALP1 in pyroptosis and inflammation, but the expression of NALP1 in colon cancer remains unknown. Furthermore, studies examining the effects of DAC on colon cancer are rare. Considering the specific multidomain architecture of NALP1, the abnormal expression of NALP1 in some diseases and its signal-mediated role in apoptosis, we choose human colorectal carcinoma tissue as a representative example of clinical solid tumors and examined the expression of NALP1. We designed our experiment to explore the correlation between NALP1 and human colorectal carcinoma. We studied the expression of NALP1 in human normal colon tissues and colon cancer tissues and measured the expression level of NALP1 in three kinds of colon cancer cell lines in the presence or absence of DAC treatment to investigate the mechanisms underlying reduced expression of NALP1 in colon cancer and the effects of DAC treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号