首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Monocytes play an important role in collateral vessel formation (arteriogenesis) by attaching to activated endothelium and by invading the walls of innate collateral vessels where they produce growth factors. Previous studies have demonstrated that this process can be promoted by several chemokines and growth factors. In this study we examined the interaction between monocytes and endothelium under stimulation of the angiogenic agent vascular endothelial growth factor (VEGF). We report here the novel finding that VEGF stimulates the expression of the alphaL-, alphaM- and beta2-integrin monomers. In functional assays and by using neutralizing antibodies it was shown that VEGF stimulates adhesion of monocytes to human umbilical vein endothelial cells (HUVEC), and increased transmigration through endothelial monolayers is dependent on interaction of monocyte beta2-integrins with its endothelial counter ligand ICAM-1. Based on these in vitro data we hypothesize that the positive effect of VEGF on arteriogenesis may involve monocyte activation.  相似文献   

2.
Endothelin is a potent vasoconstrictor peptide produced by vascular endothelial cells. Incubation of the serum-deprived confluent porcine aortic endothelial cells with 10-300 pM TGF-beta 1, resulted in a several fold increase in endothelin mRNA levels with a peak time of 2 h. An enzyme-linked immunosorbent assay revealed that the levels of endothelin in endothelial cell conditioned media was also increased by TGF-beta 1. These results suggest that TGF-beta 1, secreted by activated platelets, is involved not only in wound healing, but in the regulation of local vascular tone by stimulating endothelin production in the endothelial cells.  相似文献   

3.
4.
5.
Transforming growth factor-beta (TGF-beta) plays an essential role in chondrocyte maturation. It stimulates chondrocyte proliferation but inhibits chondrocyte differentiation. In this study, we found that TGF-beta rapidly induced beta-catenin protein levels and signaling in murine neonatal sternal primary chondrocytes. TGF-beta-increased beta-catenin induction was reproduced by overexpression of SMAD3 and was absent in Smad3(-/-) chondrocytes treated with TGF-beta. SMAD3 inhibited beta-transducin repeat-containing protein-mediated degradation of beta-catenin and immunoprecipitated with beta-catenin following TGF-beta treatment. Both SMAD3 and beta-catenin co-localized to the nucleus after TGF-beta treatment. Although both TGF-beta and beta-catenin stimulated cyclin D(1) expression in chondrocytes, the effect of TGF-beta was inhibited with beta-catenin gene deletion or SMAD3 loss of function. These results demonstrate that TGF-beta stimulates cyclin D(1) expression at least in part through activation of beta-catenin signaling.  相似文献   

6.
Smad7 is overexpressed in 50% of human pancreatic cancers. COLO-357 pancreatic cancer cells engineered to overexpress Smad7 are resistant to the actions of transforming growth factor-beta1 (TGF-beta1) with respect to growth inhibition and cisplatin-induced apoptosis but not with respect to modulation of gene expression. To delineate the mechanisms underlying these divergent consequences of Smad7 overexpression, we studied the effects of Smad7 on TGF-beta1-dependent signaling pathways and cell cycle regulating proteins. TGF-beta1 induced the phosphorylation of MAPK, p38 MAPK, and AKT2 irrespective of the levels of Smad7, and inhibitors of these pathways did not alter TGF-beta1 actions on cell growth. By contrast, Smad7 overexpression interfered with TGF-beta1-mediated attenuation of cyclin A and B levels, inhibition of cdc2 dephosphorylation and CDK2 inactivation, up-regulation of p27, and the maintenance of the retinoblastoma protein (RB) in a hypophosphorylated state. Smad7 also suppressed TGF-beta1-mediated inhibition of E2F activity but did not alter TGF-beta1-mediated phosphorylation of Smad2, the nuclear translocation of Smad2/3/4, or DNA binding of the Smad2/3/4 complex. Although Smad7 did not associate with the type I TGF-beta receptor (TbetaRI), SB-431542, an inhibitor of the kinase activity of this receptor, blocked TGF-beta1-mediated effects on Smad-2 phosphorylation. These findings point toward a novel paradigm whereby Smad7 acts to functionally inactivate RB and de-repress E2F without blocking the activation of TbetaRI and the nuclear translocation of Smad2/3, thereby allowing for TGF-beta1 to exert effects in a cancer cell that is resistant to TGF-beta1-mediated growth inhibition.  相似文献   

7.
Transforming growth factor-beta (TGF-beta), a pleiotropic cytokine, regulates cell proliferation, differentiation, and apoptosis, and plays a key role in development and tissue homeostasis. TGF-beta functions as an anti-inflammatory cytokine because it suppresses microglia and B-lymphocyte functions, as well as the production of proinflammatory cytokines. However, we previously demonstrated that the intracisternal administration of TGF-beta induces fever like that produced by proinflammatory cytokines. In this study, we investigated the mechanism of TGF-beta-induced fever. The intracisternal administration of TGF-beta increased body temperature in a dose-dependent manner. Pretreatment with cyclooxygenase-2 (COX-2)-selective inhibitor significantly suppressed TGF-beta-induced fever. COX-2 is known as one of the rate-limiting enzymes of the PGE(2) synthesis pathway, suggesting that fever induced by TGF-beta is COX-2 and PGE(2) dependent. TGF-beta increased PGE(2) levels in cerebrospinal fluid and increased the expression of COX-2 in the brain. Double immunostaining of COX-2 and von Willebrand factor (vWF, an endothelial cell marker) revealed that COX-2-expressing cells were mainly endothelial cells. Although not all COX-2-immunoreactive cells express TGF-beta receptor, some COX-2-immunoreactive cells express activin receptor-like kinase-1 (ALK-1, an endothelial cell-specific TGF-beta receptor), suggesting that TGF-beta directly or indirectly acts on endothelial cells to induce COX-2 expression. These findings suggest a novel function of TGF-beta as a proinflammatory cytokine in the central nervous system.  相似文献   

8.
9.
Transforming growth factor-β (TGF-β) signaling is controlled by a variety of regulators, of which Smad7, c-Ski, and SnoN play a pivotal role in its negative regulation. Arkadia is a RING-type E3 ubiquitin ligase that targets these negative regulators for degradation to enhance TGF-β signaling. In the present study we identified a candidate human tumor suppressor gene product RB1CC1/FIP200 as a novel positive regulator of TGF-β signaling that functions as a substrate-selective cofactor of Arkadia. Overexpression of RB1CC1 enhanced TGF-β signaling, and knockdown of endogenous RB1CC1 attenuated TGF-β-induced expression of target genes as well as TGF-β-induced cytostasis. RB1CC1 down-regulated the protein levels of c-Ski but not SnoN by enhancing the activity of Arkadia E3 ligase toward c-Ski. Substrate selectivity is primarily attributable to the physical interaction of RB1CC1 with substrates, suggesting its role as a scaffold protein. RB1CC1 thus appears to play a unique role as a modulator of TGF-β signaling by restricting substrate specificity of Arkadia.  相似文献   

10.
11.
12.
Extracellular matrix (ECM) proteins synthesized by human placental mesenchymal cells (PMCs) provide structural support for the villus. Aberrant expression of ECM proteins by PMCs has been associated with intrauterine growth restriction (IUGR). To provide insight into the mechanisms of ECM protein regulation in the stroma of the placental villus, in the current study, we examined the interaction of glucocorticoid (GC) and transforming growth factor-beta (TGFbeta) in the modulation of ECM proteins in cultures of PMCs isolated from human term placentas. Initial results obtained by ELISA showed that combined treatment with dexamethasone (DEX) and TGFbeta enhanced oncofetal fibronectin (FFN) protein levels in serum-free culture medium severalfold in a dose-dependent manner. Northern blotting and real-time polymerase chain reaction (PCR) analyses revealed a similar enhancement in levels of FN mRNA in cells treated with TGFbeta and DEX. Real-time PCR results also revealed that DEX and TGFbeta enhanced collagen (Col) I and Col IV expression, but did not affect levels of Col III or laminin, indicative of selective stimulation of ECM proteins. Hypoxic treatment moderately enhanced FFN levels in control cells but not in those treated with DEX and TGFbeta. In contrast with the results obtained with PMCs, we noted that DEX treatment suppressed FFN levels in untreated and TGFbeta-treated cytotrophoblasts, suggesting that GC and TGFbeta modulate FFN expression in placenta in a cell-type-specific manner. We conclude that GC and TGFbeta are key regulators of ECM protein synthesis in PMCs, suggesting a role in modulating placental architecture in uncomplicated pregnancies and those associated with aberrant ECM protein expression.  相似文献   

13.
The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4.  相似文献   

14.
Collagen VII, the major component of cutaneous anchoring fibrils is expressed at a low level by normal human keratinocytes and fibroblasts in vitro. In cocultures of these two cell types, signals from fibroblasts enhance expression of collagen VII by keratinocytes and vice versa. In this study, the effects of a possible mediator of such a stimulation, transforming growth factor-beta (TGF-beta), were investigated. Its effect on the expression and deposition of the highly insoluble collagen VII was assessed in a semiquantitative manner by a newly developed enzyme-linked immunoassay which is based on immunoblotting. In keratinocyte monocultures, 0.5-20 ng/ml of TGF-beta 2 induced a dose-dependent stimulation of collagen VII expression as measured per microgram of DNA. The maximal enhancement was about sevenfold compared to controls. The effect of TGF-beta 2 was observed already after 12 h, with a steady increase at least up to 3 d. As previous studies have implicated, untreated cocultures of keratinocytes and fibroblasts exhibited a higher basic level of collagen VII expression, which could be further stimulated about twofold by TGF-beta 2. Fibroblasts alone synthesized very minor quantities of collagen VII and could be only weakly stimulated by TGF-beta 2. This growth factor seems a specific enhancer of collagen VII since the expression of laminin, collagen IV, as well as total protein was increased to a much lesser extent. Our data suggest that TGF-beta may be an important mediator of epithelial-mesenchymal interactions and may regulate the synthesis of the anchoring fibrils at the skin basement membrane zone.  相似文献   

15.
Renal tubulointerstitial fibrosis is the common final pathway leading to end-stage renal failure. Tubulointerstitial fibrosis is characterized by fibroblast proliferation and excessive matrix accumulation. Transforming growth factor-beta1 (TGF-beta1) has been implicated in the development of renal fibrosis accompanied by alpha-smooth muscle actin (alpha-SMA) expression in renal fibroblasts. To investigate the molecular and cellular mechanisms involved in tubulointerstitial fibrosis, we examined the effect of TGF-beta1 on collagen type I (collagen) gel contraction, an in vitro model of scar collagen remodeling. TGF-beta1 enhanced collagen gel contraction by human renal fibroblasts in a dose- and time-dependent manner. Function-blocking anti-alpha1 or anti-alpha2 integrin subunit antibodies significantly suppressed TGF-beta1-stimulated collagen gel contraction. Scanning electron microscopy showed that TGF-beta1 enhanced the formation of the collagen fibrils by cell attachment to collagen via alpha1beta1 and alpha2beta1 integrins. Flow cytometry and cell adhesion analyses revealed that the stimulation of renal fibroblasts with TGF-beta1 enhanced cell adhesion to collagen via the increased expression of alpha1 and alpha2 integrin subunits within collagen gels. Fibroblast migration to collagen was not up-regulated by TGF-beta1. Furthermore, TGF-beta1 increased the expression of a putative contractile protein, alpha-SMA, by human renal fibroblasts in collagen gels. These results suggest that TGF-beta1 stimulates fibroblast-collagen matrix remodeling by increasing both integrin-mediated cell attachment to collagen and alpha-SMA expression, thereby contributing to pathological tubulointerstitial collagen matrix reorganization in renal fibrosis.  相似文献   

16.
17.
18.
Liver cells are considered the principal source of plasma vitronectin. The human hepatoma cell line HepG2 produces vitronectin into its culture medium. In the current work we have analyzed the regulation of vitronectin by transforming growth factor-beta 1 (TGF beta 1) in this hepatoma cell line by Northern hybridization, polypeptide and immunoprecipitation analyses and compared the response to another TGF beta-regulated gene, plasminogen activator inhibitor (PAI-1). Rabbit antibodies raised against human plasma-derived vitronectin were used in immunodetection. Polypeptide and immunoprecipitation analyses of the medium and cells, as well as immunoblotting analysis of the cells and their extracellular matrices, indicated enhanced TGF beta 1-induced production and extracellular deposition of vitronectin. Accordingly, TGF beta 1 enhanced the expression of vitronectin mRNA at picomolar concentrations (2-20 ng/ml) as shown by Northern hybridization analysis. Comparison of the temporal TGF beta induction profiles of vitronectin and PAI-1 mRNAs showed that vitronectin was induced more slowly but the vitronectin mRNAs persisted longer. In addition, platelet-derived and epidermal growth factors had an effect on vitronectin expression, but it was of lower magnitude. TGF beta 1 enhanced the expression of PAI-1 but, unlike previous reports, epidermal growth factor did not have any notable effect on PAI-1 in these cells. The results indicate that TGF beta 1 is an efficient regulator of the production of vitronectin by HepG2 cells and that PAI-1 and vitronectin are not coordinately regulated. In addition, with affinity purified antibodies to vitronectin receptor, we observed strong enhancement of the alpha subunit of the receptor in response to TGF beta 1. These effects of TGF beta are probably involved in various processes of the liver where matrix induction and controlled pericellular proteolysis is needed, as in tissue repair.  相似文献   

19.
Adrenomedullin (AM) was originally identified as a vasodilator peptide, and has recently been shown to be an antiproliferative factor in renal mesangial cells, suggesting that adrenomedullin may impair the progression of glomerulosclerosis. This study was to investigate the effect of adrenomedullin on transforming growth factor-beta1 (TGF-beta1)-stimulated cell growth, synthesis of extracellular matrix (ECM) components and the related molecular mechanism in a human tubular epithelial cell line HK-2. TGF-beta1 inhibited cell proliferation induced by fetal bovine serum, but neither AM itself affectted cell proliferation, nor did AM influence TGF-beta1-caused cell growth arrest. However, AM beginning at 10(-8) M alleviated the action of TGF-beta1-stimulated cellular collagen synthesis and secretion of fibronectin into cell culture supernatant. Activation of Smad proteins is known to be the key signaling pathway of the profibrotic effect of TGF-beta1, AM at 10(-8) M exerted no effect on TGF-beta1-induced Smad2 phosphorylation, but prevented the suppression of the inhibitory Smad6 protein by TGF-beta1 and restored Smad2-Samd6 complex formation. Our results suggest that AM can attenuate TGF-beta1-mediated renal tubulointerstitial ECM turnover via an antagonistic mechanism of inhibitory Smad in TGF-beta1-elicited signaling.  相似文献   

20.
It has been widely assumed that the interaction of transforming growth factor-beta 1 (TGF-beta 1) with its serum-binding protein, alpha 2-macroglobulin (alpha 2M), mediates the rapid clearance of TGF-beta 1 from the circulation. To test this, we have analyzed the effect of TGF-beta 1 binding on the conformational state of alpha 2M. Our results demonstrate that the binding of TGF-beta 1 to alpha 2M does not lead to the conformational change in the alpha 2M molecule that is required for the clearance of the alpha 2M.TGF-beta 1 complex via the alpha 2M receptor. Furthermore, endogenous TGF-beta 1 is associated with the conformationally unaltered slow clearance form of alpha 2M. Clearance studies in mice show that the half-life of 125I-TGF-beta 1 in the circulation (1.6 +/- 0.71 min) is not affected by blocking the alpha 2M receptor with excess conformationally altered alpha 2M. These results suggest that TGF-beta 1 is rapidly cleared from the circulation after injection by a pathway not involving alpha 2M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号