首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Marwan W 《Genetics》2003,164(1):105-115
Mutants of Physarum polycephalum can be complemented by fusion of plasmodial cells followed by cytoplasmic mixing. Complementation between strains carrying different mutational defects in the sporulation control network may depend on the signaling state of the network components. We have previously suggested that time-resolved somatic complementation (TRSC) analysis with such mutants may be used to probe network architecture and dynamics. By computer simulation it is now shown how and under which conditions the regulatory hierarchy of genes can be determined experimentally. A kinetic model of the sporulation control network is developed, which is then used to demonstrate how the mechanisms of TRSC can be understood and simulated at the kinetic level. On the basis of theoretical considerations, experimental parameters that determine whether functional complementation of two mutations will occur are identified. It is also shown how gene dosage-effect relationships can be employed for network analysis. The theoretical framework provided may be used to systematically analyze network structure and dynamics through time-resolved somatic complementation studies. The conclusions drawn are of general relevance in that they do not depend on the validity of the model from which they were derived.  相似文献   

2.
Marwan W  Starostzik C 《Protist》2002,153(4):391-400
The developmental decision for sporulation of Physarum polycephalum plasmodia is under sensory control by environmental factors like visible light or heat shock and endogenous signals like glucose starvation. Several hours after perceiving an inductive stimulus, plasmodia become committed to sporulation; thereby, they lose their unlimited replicative potential and execute a developmental program that involves differentiation into various cell types required to form a mature fruiting body. Plasmodia are multinuclear single cells which spontaneously fuse upon physical contact. Fusion of mutant plasmodia and cytoplasmic mixing allows complementation studies to be performed at the functional level. Mutant cells altered in their ability to sporulate in response to phytochrome activation by far-red light were cured by fusion with wild-type or other mutant plasmodia. Phytochrome activation in one plasmodium and subsequent fusion with a non-induced plasmodium revealed that complementation of the two mutations depended on (i) which of two genetically distinct plasmodial cells was stimulated; and (ii) on the delay time elapsed between stimulation and cytoplasmic mixing. Such experiments allow us to determine the kinetics and the causal sequence of the regulatory events tagged by mutation.  相似文献   

3.
The developmental decision for sporulation of Physarum polycephalum plasmodia is under sensory control by environmental factors like visible light or heat shock and endogenous signals like glucose starvation. Several hours after perceiving an inductive stimulus, plasmodia become committed to sporulation; thereby, they lose their unlimited replicative potential and execute a developmental program that involves differentiation into various cell types required to form a mature fruiting body. Plasmodia are multinuclear single cells which spontaneously fuse upon physical contact. Fusion of mutant plasmodia and cytoplasmic mixing allows complementation studies to be performed at the functional level. Mutant cells altered in their ability to sporulate in response to phytochrome activation by far-red light were cured by fusion with wild-type or other mutant plasmodia. Phytochrome activation in one plasmodium and subsequent fusion with a non-induced plasmodium revealed that complementation of the two mutations depended on (i) which of two genetically distinct plasmodial cells was stimulated; and (ii) on the delay time elapsed between stimulation and cytoplasmic mixing. Such experiments allow us to determine the kinetics and the causal sequence of the regulatory events tagged by mutation.  相似文献   

4.
Diphtheria toxin-resistance markers in two translational mutants, CH-RE1.22c, possessing no toxin-sensitive EF-2 (class IIa), and CH-RE1.32, with 50% toxin-sensitive and 50% toxin-resistant EF-2 (class IIb), behaved codominantly in somatic cell hybrids. There was no complementation in hybrids formed between the two resistant mutants. The mutant parents and their hybrids, except those formed by fusion of CH-RE1.32 and wild-type cells, grew in the presence of toxin. To explain these results we suggest that CHO-K1 cells possess two functional copies of the gene for EF-2 and that CH-RE1.22c and CH-RE1.32 represent the homozygous (R/R) and heterozygous (R/S) states of resistance at the EF-2 gene locus. The failure of hybrids formed between CH-RE1.32 and wild-type cells to grow in toxin is a gene dosage effect. Codominant class IIa translational resistance is a selectable marker for the isolation of hybrids. It can be combined with a second, recessive, marker to provide a cell which is a "universal hybridizer" (10).  相似文献   

5.
Partitioning of the cytoplasm during cytokinesis or cellularisation requires syntaxin-mediated membrane fusion [1-3]. Whereas in animals, membrane fusion promotes ingression of a cleavage furrow from the plasma membrane [4,5], somatic cells of higher plants form de novo a transient membrane compartment, the cell plate, which is initiated in the centre of the division plane and matures into a new cell wall and its flanking plasma membranes [6,7]. Cell plate formation results from the fusion of Golgi-derived vesicles delivered by a dynamic cytoskeletal array, the phragmoplast. Mutations in two Arabidopsis genes, KNOLLE (KN) and KEULE (KEU), cause abnormal seedlings with multinucleate cells and incomplete cell walls [1,8]. The KN gene encodes a cytokinesis-specific syntaxin which localises to the cell plate [9]. Here, we show that KN protein localisation is unaffected in keu mutant cells, which, like kn, display phragmoplast microtubules and accumulate ADL1 protein in the plane of cell division but vesicles fail to fuse with one another. Genetic interactions between KN and KEU were analysed in double mutant embryos. Whereas the haploid gametophytes gave rise to functional gametes, the embryos behaved like single cells displaying multiple, synchronously cycling nuclei, cell cycle-dependent microtubule arrays and ADL1 accumulation between pairs of daughter nuclei. This complete inhibition of cytokinesis from fertilisation indicates that KN and KEU, have partially redundant functions and interact specifically in vesicle fusion during cytokinesis of somatic cells.  相似文献   

6.
V-H4, a mitomycin C (MMC)-sensitive Chinese hamster cell mutant, is phenotypically very similar to Fanconi anemia (FA) cells. Genetic complementation analysis shows that V-H4 belongs to the same complementation group as FA group A cells. Proliferating hybrid cell lines obtained after fusion of V-H4 with normal or FA group B cells show an increased resistance to MMC. Absence of complementation was noted in V-H4 x FA group A hybrid cell lines. This was shown not to be due to the absence of a specific human chromosome. The V-H4 mutant represents the first rodent mutant that is genotypically similar to FA complementation group A cells.  相似文献   

7.
Protoplasts from two green pigment mutants of Porphyridium sp. (UTEX 637) containing a low phycoerythrin level were fused by exposure to polyethylene glycol (MW 6000) combined with a short heat shock (45° C, 5 min). Following regeneration on agar plates, red colonies arose in which complementation of the phycoerythrin deficiency had occurred. The complementation frequency was estimated to be 0.2%. Eight progeny showing red pigmentation were isolated and purified by consecutive transfers on agar plates. Characterization of the fusion progeny revealed that their phycobiliprotein and chlorophyll contents per cell were higher than those of their parental mutant strains and, in most strains, similar to that of the wild type. The fusion products proved to be stable over many growth cycles. The DNA content of the wild type and of the parental mutant strains was about 0.05 pg-cell?1. Fusion progeny strains showed a variable DNA content: a few fusants contained the same amount of DNA as the wild type and the parental strains, while others had about 50% more DNA per cell. The DNA content of one of the progeny strains (CF1c) was double that of the wild type (0.1 pg. cell?1). Cells of this fusion progeny contained one nucleus per cell, which suggests that nuclear fusion and the formation of a stable diploid followed cell fusion. Analysis of phycobilisome components of CF1c revealed complementation of linker polypeptides associated with phycoerythrin (γ subunits). CF1c contained, like the wild-type strain, four linker polypeptides; all of these were absent in one parental strain and one was absent in the second. To the best of our knowledge, this is the first report of protoplast fusion, formation of somatic hybrids, and the apparent completion of a parasexual cycle in a red microalga.  相似文献   

8.
Procedures for characterizing replication-defective viruses in nonpermissive mammalian cells were developed and applied to three nonvirogenic Rous sarcoma virus (RSV)-transformed mammalian cell lines--B4, a line of Bryan virus-transformed hamster cells, and two SRD-RSV transformed rat cell lines, LR3/1 and LR3/2. Cell fusion was used to study virus complementation. The three cell lines (i) fused with helper virus-infected chicken cells and the host range of the rescued virus examined, (ii) tested for complementation by fusion with chicken cells exhibiting various patterns of endogenous virus expression, (iii) fused with chicken cells infected with the temperature-sensitive replication mutant LA334 and assayed for complementation at permissive and nonpermissive temperatures, and (iv) tested for complementation of defective viruses in other RSV-transformed mammalian cell lines by fusing pairs of nonvirogenic cell lines and permissive chicken cells. Based upon these complementation studies, we concluded that B4 virus is defective only in the env gene, LR3/) virus is an absolute mutant in the gag and/or pol genes, and LR3/2 virus is a leaky env mutant. Clones of LR3/1 and LR3/2 virus-infected chicken cells were established, and the results obtained from the characterization of these viruses in permissive avian cells substantiates the conclusions reached in the fusion-rescue studies.  相似文献   

9.
In mammalian cells, there is an extensive and continuous exchange of mitochondrial DNA (mtDNA) and its products between mitochondria. This mitochondrial complementation prevents individuals from expression of respiration deficiency caused by mutant mtDNAs. Thus, the presence of mitochondrial complementation does not support the generally accepted mitochondrial theory of aging, which proposes that accumulation of somatic mutations in mtDNA is responsible for age-associated mitochondrial dysfunction. Moreover, the presence of mitochondrial complementation enables gene therapy for mitochondrial diseases using nuclear transplantation of zygotes.  相似文献   

10.
S. Wayne  K. Liggett  J. Pettus    R. N. Nagoshi 《Genetics》1995,139(3):1309-1320
The small ovary gene (sov) is required for the development of the Drosophila ovary. Six EMS-induced recessive alleles have been identified. Hypomorphic alleles are female sterile and have no effect on male fertility, whereas more severe mutations result in lethality. The female-sterile alleles produce a range of mutant phenotypes that affect the differentiation of both somatic and germline tissues. These mutations generally produce small ovaries that contain few egg cysts and disorganized ovarioles, and in the most extreme case no ovarian tissue is present. The mutant egg cysts that develop have aberrant morphology, including abnormal numbers of nurse cells and patches of necrotic cells. We demonstrate that sov gene expression is not required in the germline for the development of functional egg cysts. This indicates that the sov function is somatic dependent. We present evidence using loss-of-function and constitutive forms of the somatic sex regulatory genes that sov activity is essential for the development of the somatic ovary regardless of the chromosomal sex of the fly. In addition, the genetic mapping of the sov locus is presented, including the characterization of two lethal sov alleles and complementation mapping with existing rearrangements.  相似文献   

11.
12.
W Witke  M Schleicher  A A Noegel 《Cell》1992,68(1):53-62
We generated by gene disruption Dictyostelium cells that lacked both the F-actin cross-linking proteins, alpha-actinin and gelation factor. Several major cell functions, such as growth, chemotaxis, phagocytosis, and pinocytosis, were apparently unaltered. However, in all double mutants, development was greatly impaired. After formation of aggregates, cells were very rarely able to form fruiting bodies. This ability was rescued when mutant and wild-type strains were mixed in a ratio of 70 to 30. The developmental program in the mutant was not arrested, since the expression pattern of early and late genes remained unchanged. Development of the mutant was rendered normal when a functional alpha-actinin gene was introduced and expressed, showing the morphogenetic defect to be due to the absence of the two F-actin cross-linking proteins. These findings suggest the existence of a functional network allowing mutual complementation of certain actin-binding proteins.  相似文献   

13.
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder characterized by microcephaly, short stature, immunodeficiency, and a high incidence of cancer. Cultured cells from NBS show chromosome instability, an increased sensitivity to radiation-induced cell killing, and an abnormal cell-cycle regulation after irradiation. Hitherto, patients with NBS have been divided into the two complementation groups V1 and V2, on the basis of restoration of radioresistant DNA synthesis, suggesting that each group arises from a different gene. However, the presence of genetic heterogeneity in NBS has been considered to be controversial. To localize the NBS gene, we have performed functional complementation assays using somatic cell fusion between NBS-V1 and NBS-V2 cells, on the basis of hyper-radiosensitivity, and then have performed a genomewide search for the NBS locus, using microcell-mediated chromosome transfer followed by complementation assays based on radiosensitivity. We found that radiation resistance was not restored in the fused NBS-V1 and NBS-V2 cells and that only human chromosome 8 complements the sensitivity to ionizing radiation, in NBS cell lines. In complementation assays performed after the transfer of a reduced chromosome, merely the long arm of chromosome 8 was sufficient for restoring the defect. Our results strongly suggest that NBS is a homogeneous disorder and that the gene for NBS is located at 8q21-24.  相似文献   

14.
A method was developed to select host cell mutants which did not permit the replication of Newcastle disease virus (NDV), and 14 isolates of NDV-nonpermissive mutants of mouse FM3A cells were obtained. All these isolates were judged to be deficient in NDV receptors, since their ability to adsorb 3H-labeled NDV virions was markedly decreased. They were tested for genetic complementation in pairs by cell fusion and shown to fall into a single recessive complementation group, which was designated as Had-1. Vesicular stomatitis virus was able to replicate in this mutant to produce infectious progeny, but the glycoprotein of the released virion was abnormal in size, suggesting a defective processing of the asparagine-linked carbohydrate chains in the mutant cell. The Had-1 mutant was resistant to wheat germ agglutinin, but sensitive to a Griffonia simplicifolia lectin, GS-II, which recognizes terminal N-acetylglucosamine residues. The altered sensitivity to these plant lectins compared with that of the parental FM3A cells indicates that sialylated sugar chains on the cell surface are almost absent from the Had-1 cells, thereby rendering the cells NDV receptor deficient.  相似文献   

15.
Coulthard AB  Nolan N  Bell JB  Hilliker AJ 《Genetics》2005,170(4):1711-1721
Transvection is a phenomenon wherein gene expression is effected by the interaction of alleles in trans and often results in partial complementation between mutant alleles. Transvection is dependent upon somatic pairing between homologous chromosome regions and is a form of interallelic complementation that does not occur at the polypeptide level. In this study we demonstrated that transvection could occur at the vestigial (vg) locus by revealing that partial complementation between two vg mutant alleles could be disrupted by changing the genomic location of the alleles through chromosome rearrangement. If chromosome rearrangements affect transvection by disrupting somatic pairing, then combining chromosome rearrangements that restore somatic pairing should restore transvection. We were able to restore partial complementation in numerous rearrangement trans-heterozygotes, thus providing substantial evidence that the observed complementation at vg results from a transvection effect. Cytological analyses revealed this transvection effect to have a large proximal critical region, a feature common to other transvection effects. In the Drosophila interphase nucleus, paired chromosome arms are separated into distinct, nonoverlapping domains. We propose that if the relative position of each arm in the nucleus is determined by the centromere as a relic of chromosome positions after the last mitotic division, then a locus will be displaced to a different territory of the interphase nucleus relative to its nonrearranged homolog by any rearrangement that links that locus to a different centromere. This physical displacement in the nucleus hinders transvection by disrupting the somatic pairing of homologous chromosomes and gives rise to proximal critical regions.  相似文献   

16.
Construction of rice cybrid plants   总被引:1,自引:0,他引:1  
Summary The mitochondrial genomes of rice cells were transferred to a fertile rice variety (N8) from a cytoplasmic male sterile variety (CMS) by asymmetric protoplast fusion based on metabolic complementation. Protoplasts derived from CMS were X-irradiated (125 krad) and electrofused with protoplasts which had been treated with iodoacetamide. Metabolic complementation, presumably between nuclear and cytoplasmic compartments, enabled fused protoplasts to form colonies at high efficiency. Restriction digest analysis of mitochondrial DNA (mtDNA) indicated that hybrid cells carried mtDNA derived from both parents. Of the plants regenerated from hybrid calli, 68% carried a diploid chromosome set (2n=24) and the rest of them carried 48 chromosomes. All of them expressed the aryl acylamidase I deficient phenotype encoded by the recessive allele of the fertile N8 parent. These results indicate that the novel somatic hybrid plants regenerated were cybrids, deriving their nucleus from the iodoacetamide treated parent and their mitochondria from both parents.  相似文献   

17.
Protoplast fusion was induced between sainfoin and alfalfa by an improved polyethyleneglycol (PEG) method. The intergeneric somatic calluses were selected based on complementation of hydroxyproline-resistance of sainfoin and hormone autonomy growth of alfalfa transformation cell line. 17 somatic hybrid plantlets were regenerat-ed. PEG could induce the tight agglutination of protoplasts. During diluting and washing process, cyclization of the linked membrane and formation of vesicle-like structures were observed, resulting in protoplast fusion. 5%-10% glycerol supplemented in the fusion inducing solution markedly increased the frequency of heterogeneous fusion. Better fusion results were obtained when mixed protoplast suspension was dripped in petri dishes in which PEG solution was previously placed. Chromosome number of regenerated hybrid buds varied from 30 to 60. The genome of hybrids in-cluded the small chromosome from sainfoin and two chromosomes with two clear constrictions from alfalfa. The hybrid  相似文献   

18.
The synthesis and properties of T25 glycoprotein which bears the serological specificity Thy-1 have been studied in mutants of cultured mouse lymphoma cells that do not express Thy-1 on their surface. Five complementation classes of mutant cells were previously characterized by somatic genetic analysis. Synthesis of abnormal T25 glycoproteins was detected in four classes of mutants. Each of these aberrant products was degraded more rapidly than T25 glycoprotein of wild-type cells. Defects in the oligosaccharide units of T25 glycoprotein were demonstrated in three classes of mutants. In one of these mutant classes, evidence for a general defect in glycosylation of cell surface glycoproteins was obtained. These data indicate that normal glycosylation of T25 glycoprotein is probably essential for the molecule to be incorporated into the plasma membrane and expressed on the cell surface.  相似文献   

19.
Protoplast fusion was induced between sainfoin and alfalfa by an improved polyethyleneglycol (PEG) method. The intergeneric somatic calluses were selected based on complementation of hydroxyproline-resistance of sainfoin and hormone autonomy growth of alfalfa transformation cell line. 17 somatic hybrid plantlets were regenerated. PEG could induce the tight agglutination of protoplasts. During diluting and washing process, cyclization of the linked membrane and formation of vesicle-like structures were observed, resulting in protoplast fusion. 5%–10% glycerol supplemented in the fusion inducing solution markedly increased the frequency of heterogeneous fusion. Better fusion results were obtained when mixed protoplast suspension was dripped in petri dishes in which PEG solution was previously placed. Chromosome number of regenerated hybrid buds varied from 30 to 60. The genome of hybrids included the small chromosome from sainfoin and two chromosomes with two clear constrictions from alfalfa. The hybridity of obtained hybrid calluses was confirmed by their isayrne banding patterns and their nopaline synthetase activity.  相似文献   

20.
Benomyl treatment (at 100 micrograms ml-1) of Candida albicans 1001, and other strains derived from it, determined the appearance of morphological mutants similar to those derived from UV irradiation treatment. A permanent alteration in the morphogenesis of these mutant strains determined their inability to grow by budding, to form oval yeast cells or blastospores (Y-phenotype) and their growth as long filamentous forms, mostly with the appearance of pseudomycelium, giving rise to rough colonies (R phenotype). In order to carry out a genetic complementation analysis, we isolated morphological mutants that carried other genetic markers (nutritional, conditional lethal) adequate for crosses by means of protoplast fusion. Wild-type hybrids of regular mononuclear oval yeast cells and smooth colonies were obtained by crossing pairs of complementing mutants, whereas hybrids from crosses of non-complementing mutants still retained their morphological alterations. Our results define two complementation groups, which represent two genes relevant for dimorphism, whose alteration interferes with the correct transition from blastospores to mycelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号