首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purified trehalases of the mesophilic fungus, Neurospora crassa, and the thermophilic fungus, Thermomyces lanuginosus, had similar temperature and pH optima for activity, but differed in molecular weight, electrophoretic mobility and Michaelis constant. At lower concentration, trehalases from both fungi were inactivated to similar extent at 60°C. While purified trehalase of T. lanuginosus was afforded protection against heat-inactivation by proteinaceous protective factor(s) present in mycelial extracts, by bovine serum albumin and by casein, these did not afford protection to N. crassa trehalase against heat inactivation. Both trehalases exhibited discontinuous Arrhenius plots with temperature of discontinuity at 40°C. The activation energy calculated from the slope of the Arrhenius plot was higher for the T. lanuginosus enzyme. The plots of apparent K m versus 1/T for trehalases of N. crassa and T. lanuginosus were linear from 30° to 60°C.The results show that purified trehalases of the mesophilic and the thermophilic fungus are distinct. Although, these exhibit similar thermostability of their catalytic function at low concentration, distinctive thermal stability characteristics of thermophilic enzyme become apparent at high protein concentration. This could be brought about in the cell by the enzyme itself, or by other proteins.  相似文献   

2.
A crude preparation of membrane-bound phospholipase A (detergent-resistant) in Escherichia coli K-12 cells was found to be quite stable or even apparently activated on incubation at 100 degrees C, but became strikingly thermolabile when it was highly purified and Triton X-100 was removed from the purified enzyme preparation. The rate of inactivation showed a biphasic temperature dependence: inactivation was rapid at 37 degrees C and also above 70 degrees C. Inactivation above 70 degrees C changed the mobility of the enzyme on sodium dodecyl sulfate/polyacrylamide gel electrophoresis, but inactivation at 37 degrees C did not affect the electrophoretic mobility. Triton X-100 effectively protected the enzyme against inactivation at 37 degrees C. The concentration required for the protection of the enzyme was more than its critical micelle concentration. Phospholipids, such as phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, phosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylcholine, also protected the enzyme against inactivation at 37 degrees C. These results suggest that the binding of hydrophobic compounds stabilizes the enzyme.  相似文献   

3.
Lactate dehydrogenase (EC 1.1.1.27) from Vibrio marinus MP-1 was purified 15-fold and ammonium activated. The optimum pH for pyruvate reduction was 7.4. Maximum lactate dehydrogenase activity occurred at 10 to 15 degrees C, and none occurred at 40 degrees C. The crude-extract enzyme was stable between 15 and 20 degrees C and lost 50% of its activity after 60 min at 45 degrees C. The partially purified enzyme was stable between 8 and 15 degrees C and lost 50% of its activity after 60 min at 30 degrees C. The thermal stability of lactate dehydrogenase was increased by mercaptoethanol, with 50% remaining activity at 42 degrees C.  相似文献   

4.
A novel goose-type lysozyme was purified from egg white of cassowary bird (Casuarius casuarius). The purification step was composed of two fractionation steps: pH treatment steps followed by a cation exchange column chromatography. The molecular mass of the purified enzyme was estimated to be 20.8 kDa by SDS-PAGE. This enzyme was composed of 186 amino acid residues and showed similar amino acid composition to reported goose-type lysozymes. The N-terminal amino acid sequencing from transblotted protein found that this protein had no N-terminal. This enzyme showed either lytic or chitinase activities and had some different properties from those reported for goose lysozyme. The optimum pH and temperature on lytic activity of this lysozyme were pH 5 and 30 degrees C at ionic strength of 0.1, respectively. This lysozyme was stable up to 30 degrees C for lytic activity and the activity was completely abolished at 80 degrees C. The chitinase activity against glycol chitin showed dual optimum pH around 4.5 and 11. The optimum temperature for chitinase activity was at 50 degrees C and the enzyme was stable up to 40 degrees C.  相似文献   

5.
Lactate dehydrogenase (EC 1.1.1.27) from Vibrio marinus MP-1 was purified 15-fold and ammonium activated. The optimum pH for pyruvate reduction was 7.4. Maximum lactate dehydrogenase activity occurred at 10 to 15 degrees C, and none occurred at 40 degrees C. The crude-extract enzyme was stable between 15 and 20 degrees C and lost 50% of its activity after 60 min at 45 degrees C. The partially purified enzyme was stable between 8 and 15 degrees C and lost 50% of its activity after 60 min at 30 degrees C. The thermal stability of lactate dehydrogenase was increased by mercaptoethanol, with 50% remaining activity at 42 degrees C.  相似文献   

6.
Myofibril-bound serine protease (MBSP) from lizard fish (SAURIDA UNDOSQUAMIS: Synodontidae) skeletal muscle was purified to homogeneity with higher purification (1260-fold) and higher recovery (7%) than our previous report in lizard fish (Saurida wanieso). The new purification method combines a heat-treatment for dissociation from washed myofibrils, acid-treatment at pH 5.0 before and after lyophilization, and alcohol-treatment, followed by two column chromatographies. The molecular mass of the enzyme was estimated to be 50 kDa under non-reducing conditions and 28 kDa under reducing conditions by SDS-PAGE. The N-terminal amino acid sequence of the MBSP was determined to be 22 residues (IVGGYEXEAYSKPYQVSINLGY) and the sequence showed high homology to carp and other fish trypsins (64-77%), but did not show high homology to carp MBSP (41%). The enzyme activity was inhibited by serine protease inhibitors such as Pefabloc SC, leupeptin, TLCK and native protein inhibitors (soybean trypsin inhibitor, alpha(1)-antitrypsin and aprotinin). The purified enzyme specifically hydrolyzed at the carboxyl side of the arginine residue of synthetic 4-methyl-coumaryl-7-amide substrate. When purified MBSP was stored at -35 degrees C in the presence of 50% ethylene glycol (V/V), the enzyme activity was entirely preserved over 6 months and stable against freezing and thawing. Activities for both casein and the synthetic substrate were most active at pH 9.0, and the enzyme was most active approximately 55 degrees C with casein and between 35 and 45 degrees C for synthetic substrate. When myofibrils were incubated with purified MBSP, myosin heavy chain was mostly degraded approximately 55 degrees C, but the degradation of actin was very slow.  相似文献   

7.
A glycoside hydrolase characterized by beta-fucosidase (EC 3.2.1.38) and beta-glucosidase (EC 3.2.1.21) activities was purified from the culture medium of the anaerobic ruminal phycomycete Neocallimastix frontalis grown on 0.5% Avicel. The enzyme had a molecular mass of 120 kilodaltons and a pI of 3.85. Optimal activity against p-nitrophenyl-beta-d-fucoside and p-nitrophenyl-beta-D-glucoside occurred at pH 6.0 and 50 degrees C. The beta-fucosidase and beta-glucosidase activities were stable from pH 6.0 to pH 7.8 and up to 40 degrees C. They were both inhibited by gluconolactone, sodium dodecyl sulfate, p-chloromercuribenzoate, and Hg cation. The enzyme had K(m)s of 0.26 mg/ml for p-nitrophenyl-beta-d-fucoside and 0.08 mg/ml for p-nitrophenyl-beta-d-glucoside. The purified protein also had low beta-galactosidase activity.  相似文献   

8.
The glycerate kinase of a serine-producing methylotroph, Hyphomicrobium methylovorum GM2, was purified to complete homogeneity and characterized, the first time for an enzyme from a methylotroph. The enzyme was a monomer with a molecular mass about 41-52 kDa. The enzyme was stable against heating at 35 degrees C for 30 min at pH values over 6-10. Maximum activity was observed at pH 8.0 and around 50 degrees C. The Km values for D-glycerate and ATP were 0.13 mM and 0.13 mM, respectively. The enzyme showed high specificity for D-glycerate, and was activated by potassium and ammonium ions. The reaction product of the enzyme was identified as 2-phosphoglycerate.  相似文献   

9.
Trehalase is the enzyme which hydrolyzes the disaccharide trehalose into two alpha-D-glucose molecules. In this article, we present the immobilization of trehalase on aminopropyl glass particles. The enzyme was extracted from Escherichia coli Mph2, a strain harboring the pTRE11 plasmid, which contains the trehalase gene. The partially purified enzyme had a specific activity of 356 U/mg and could be used for quantifying trehalose in the presence of sucrose, maltose, lactose, starch, and glycogen. Partially purified trehalase was immobilized by covalent coupling with retention of its catalytic activity. The support chosen for the majority of the experiments reported was aminopropyl glass, although spherisorb-5NH(2) and chitin were also tested. The immobilized enzyme was assayed continuously for 40 h, at pH 6.0 and 30 degrees C, and no release of enzyme molecules was detected during this procedure. The best condition found for storing the enzyme-support complex was at 4 degrees C in the presence of 25 mM sodium maleate, containing 7 mM beta-mercaptoethanol, 1 mM ethylenediaminetetraacetic acid (EDTA), and 50% glycerol. The enzyme under these conditions was stable, retaining approximately 100% of its initial activity for at least 28 days. The immobilized enzyme can be employed to detect trehalose molecules in micromolar concentration. The optimum pH value found was 4.5 and the K(m) app. 4.9 x 10(-3) M trehalose at pH 4.6 and 30 degrees C, with V(max) of 5.88 mumol glucose . min.(-1), as calculated by a Lineweaver-Burk plot. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 33-39, 1997.  相似文献   

10.
1. The alkaline proteinase showing pH optimum 8.0 from white croaker (Sciaena schlegeli) skeletal muscle was purified electrophoretically homogeneously (2000-fold) using a combination of DEAE-cellulose chromatography, hydroxylapatite chromatography and Ultrogel AcA 34 gel filtration. 2. It was stable for 1 hr at 50 degrees C. The molecular weight of the enzyme was estimated to be 430,000 by gel filtration, with the enzyme composed of four kinds of subunits, the chain molecular weights of which were 45,000, 48,000, 51,000 and 57,000. 3. From the effects of inhibitors, the enzyme was identified as cysteine proteinase. ATP and Cu2+ inhibited the activity 50% at 10 mM and 70% at 0.1 mM, respectively. 4. Thus the enzyme was characterized as a high molecular weight, heat-stable, alkaline cysteine proteinase (HAP). 5. The enzyme showed hardly any activity below 50 degrees C but considerable activity at around 60 degrees C against myofibrils, digesting myosin heavy chain, actin and tropomyosin. With the addition of 5 M urea the enzyme hydrolyzed myofibrils well at around 30 degrees C.  相似文献   

11.
H Trindade  A Karmali  M S Pais 《Biochimie》1988,70(12):1759-1764
Catalase (E.C 1.11.1.6) was purified from leaves of Zandedeschia aethiopica to apparent homogeneity by a one-step hydrophobic interaction chromatography on a phenyl Sepharose CL-4B column. The purified enzyme preparation was obtained with a final recovery of enzyme activity of about 61% and a specific activity of 146 U/mg protein. The purified enzyme ran as a single protein band when analyzed both by native PAGE and SDS-PAGE corresponding to an Mr of 220,000 Da, which consists of 4 subunits with identical Mr of 54,000 Da. The pI of purified enzyme was found to be 5.2 by isoelectric focusing on ultrathin polyacrylamide gels. The purified catalase has an optimum temperature of activity at 40 degrees C, whereas it is stable between 0 degrees and 50 degrees C. As regards pH, the enzyme has an optimum activity at pH 7.0 and it is stable in the range pH 6-8. The absorption spectrum of the purified enzyme exhibited 2 peaks at 280 nm and 405 nm.  相似文献   

12.
A thermoactive and thermostable levansucrase was purified from a newly isolated thermophilic Bacillus sp. from Thailand soil. The purification was achieved by alcohol precipitation, DEAE-Cellulose and gel filtration chromatographies. The enzyme was purified to homogeneity as determined by SDS-PAGE, and had a molecular mass of 56 kDa. This levansucrase has some interesting characteristics regarding its optimum temperature and heat stability. The optimum temperature and pH were 60 degrees C and 6.0, respectively. The enzyme was completely stable after treatment at 50 degrees C for more than 1 h, and its activity increased four folds in the presence of 5 mM Fe(2+). The optimum temperature for levan production was 50 degrees C. Contrary to other levansucrases, the one presented in this study is able to produce high molecular weight levan at 50 degrees C.  相似文献   

13.
An enzyme producing isoprimeverose from xyloglucan fragment oligosaccharides has been purified to the electrophoretically pure state from a commercial enzyme preparation of Aspergillus oryzae (Sanzyme 1000). The purified enzyme showed approximately 1,280-fold increase of the specific activity over the original preparation. The purified enzyme was shown to be an oligomeric protein consisting of two subunits, each of which had a molecular weight of 115,000. The enzyme showed the highest activity at pH 5.0 and 60 degrees C, and was stable in the pH range from 5 to 7 and at up to 50 degrees C. The isoelectric point of this enzyme was pH 3.9. The purified enzyme was highly specific for xyloglucan fragment oligosaccharides and split off isoprimeverose units from the non-reducing end of the backbone of the substrate.  相似文献   

14.
Hyaluronidase from Propionibacterium acnes has been purified 13,000-fold from the culture supernatant to homogeneity (as determined by polyacrylamide disc gel electrophoresis). The molecular weight of the purified enzyme was 85,110 as determined by gel filtration. The purified enzyme had a pH optimum at 6.4, was stable between pH 5 and 5.8 and was completely inactivated after 15 min at 50 degrees C. Preliminary studies suggested that the enzyme is active against chondroitin 4- and 6-sulphates, but not against dermatan sulphate. Analysis by paper chromatography of the reaction products from the degradation of hyaluronic acid by bacterial, testicular and P. acnes enzymes suggested that the P. acnes enzyme is similar in its mode of action to other bacterial hyaluronate lyases. The enzyme from P. acnes may thus be tentatively classified as a hyaluronate lyase.  相似文献   

15.
灰色链霉菌RX-17溶菌酶R1的纯化及性质研究   总被引:6,自引:0,他引:6  
通过硫酸铵分级沉淀,CM-Sephadex C50、CM-Sepharose Fast Flow离子交换层析及Sephadex G-75凝胶过滤层析,从灰色链霉菌(Streptomyces griseus)RX17的发酵上清液中得到了电泳纯的溶菌酶R1,回收率6.89%。测得该酶分子量和等电点分别为16.8kD和9.10,作用于变链球菌(Streptococcus mutans)Ingbritt的最适温度和pH分别为70℃和6.6。R1酶在50℃以下及pH6~9的范围内保持稳定,60℃保温1h,残存酶活20.3%。Mg2+对酶有激活作用,而Zn2+、Cu2+、Fe2+、Cd2+、Pb2+则使酶完全丧失活性,螯合剂、盐酸羟胺、碘乙酸抑制酶活,β-巯基乙醇及表面活性剂则对溶菌有部分促进作用。R1酶溶菌谱广泛,对多种卵清溶菌酶不能作用的G+、G细菌均有溶解能力,对变链球菌、金黄色葡萄球菌(Staphylococcus aureus)、乳杆菌(Lactobacillus)等则呈现高活性。  相似文献   

16.
A novel glucooligosaccharide oxidase was purified 495-fold from wheat bran culture of a soil-isolated Acremonium strictum strain T1 with an overall yield of 21%. This enzyme was composed of a single polypeptide chain with a molecular mass of 61 kDa as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and size-exclusion high-performance liquid chromatography. Its isoelectric point was pH 4.3-4.5. This enzyme contained 1 mol of FAD per mol of enzyme and showed absorption maxima at 274, 379 and 444 nm. This enzyme was stable in the pH range of 5.0 to 11.0 with an optimal reaction pH of 10.0. The optimal reaction temperature was 50 degrees C. It was stable up to 50 degrees C for 1 h at pH 7.8. This enzyme oxidized those oligosaccharides with glucose residue on the reducing end and each sugar residue jointed by alpha or beta-1,4 glucosidic bond. The relative activity of this enzyme toward maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, lactose, cellobiose and glucose was 100:94:74:46:66:56:64:47:59. To our knowledge, this is the first report on the discovery of an glucooligosaccharide oxidase as judged from enzyme substrate specificity.  相似文献   

17.
Trehalose and glycerol are known as good stabilizers of function and structure of several macromolecules against stress conditions. We previously reported that they have comparable effectiveness on protecting two yeast cytosolic enzymes against thermal inactivation. However, enzyme protection has always been associated to a decrease in catalytic activity at the stabilizing conditions i.e., the presence of the protective molecule. In the present study we tested trehalose and glycerol on thermal protection of the mammalian cytosolic enzyme phosphofructokinase. Here we found that trehalose was able to protect phosphofructokinase against thermal inactivation as well as to promote an activation of its catalytic activity. The enzyme incubated in the presence of 1 M trehalose did not present any significant inactivation within 2 h of incubation at 50 degrees C, contrasting to control experiments where the enzyme was fully inactivated during the same period exhibiting a t0.5 for thermal inactivation of 56+/-5 min. On the other hand, enzyme incubated in the presence of 37.5% (v/v) glycerol was not protected against incubation at 50 degrees C. Indeed, when phosphofructokinase was incubated for 45 min at 50 degrees C in the presence of lower concentrations of glycerol (7.5-25%, v/v), the remaining activity was 2-4 times lower than control. These data show that the compatibility of effects previously shown for trehalose and glycerol with some yeast cytosolic enzymes can not be extended to all globular enzyme system. In the case of phosphofructokinase, we believe that its property of shifting between several different complex oligomers configurations can be influenced by the physicochemical properties of the stabilizing molecules.  相似文献   

18.
The distribution of dye-linked L-amino acid dehydrogenases was investigated in several hyperthermophiles, and the activity of dye-linked L-proline dehydrogenase (dye-L-proDH, L-proline:acceptor oxidoreductase) was found in the crude extract of some Thermococcales strains. The enzyme was purified to homogeneity from a hyperthermophilic archaeon, Thermococcus profundus DSM 9503, which exhibited the highest specific activity in the crude extract. The molecular mass of the enzyme was about 160 kDa, and the enzyme consisted of heterotetrameric subunits (alpha(2) beta(2)) with two different molecular masses of about 50 and 40 kDa. The N-terminal amino acid sequences of the alpha-subunit (50-kDa subunit) and the beta-subunit (40-kDa subunit) were MRLTEHPILDFSERRGRKVTIHF and XRSEAKTVIIGGGIIGLSIAYNLAK, respectively. Dye-L-proDH was extraordinarily stable among the dye-linked dehydrogenases under various conditions: the enzyme retained its full activity upon incubation at 70 degrees C for 10 min, and ca. 40% of the activity still remained after heating at 80 degrees C for 120 min. The enzyme did not lose the activity upon incubation over a wide range of pHs from 4.0 to 10.0 at 50 degrees C for 10 min. The enzyme exclusively catalyzed L-proline dehydrogenation using 2,6-dichloroindophenol (Cl2Ind) as an electron acceptor. The Michaelis constants for L-proline and Cl2Ind were determined to be 2.05 and 0.073 mM, respectively. The reaction product was identified as Delta(1)-pyrroline-5-carboxylate by thin-layer chromatography. The prosthetic group of the enzyme was identified as flavin adenine dinucleotide by high-pressure liquid chromatography. In addition, the simple and specific determination of L-proline at concentrations from 0.10 to 2.5 mM using the stable dye-L-proDH was achieved.  相似文献   

19.
Enzymatic properties of a purified Penicillium nuclease (designated as nuclease P1) were investigated. The enzyme activities for RNA, heat-denatured DNA, native DNA, 3′-AMP and 2′-AMP showed a great degree of similarity with respect to the following properties: a) Range of stable pH (5~8), b) temperature optima (at around 70°C), c) thermostability (about 50% inactivation at 67°C, pH 6.0 for 15 min, d) effect of metal ions and SH inhibitors, e) requirement of Zn2+, f) protection from the heat-inactivation by albumin and Zn2+, g) inactivation on standing in the cold and reactivation on heating, h) sensitivity to protease, and i) competitive relationship between substrates in the enzyme reaction. Moreover, the ratio of enzyme activities in several mutants of Penicillium citrinum was constant. From these results, together with constant ratio of the specific activities throughout purification, it is concluded that a single enzyme might be responsible for both phosphodiesterase and phosphomonoesterase functions.  相似文献   

20.
A haloalkane dehalogenase was purified to electrophoretic homogeneity from cell extracts of a 1-chlorobutane-utilizing strain, m15-3, which was identified as a Corynebacterium sp. The enzyme hydrolyzed C2 to C12 mono- and dihalogenated alkanes, some haloalcohols, and haloacids. The Km value of the enzyme for 1-chlorobutane was 0.18 mM. Its molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 33,000 by gel filtration. The isoelectric point was pH 4.5. The optimum pH for enzyme activity was found to be 9.4, and the optimum temperature was 30 to 35 degrees C. The enzyme was stable for 1 h at temperatures ranging from 4 to 30 degrees C but was progressively less stable at 40 and 50 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号