首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The aim of this research was to investigate the effect of caffeine on band 3 (the anion exchanger protein), haemoglobin function, caspase 3 activation and glucose-6-phosphate metabolism during the oxygenation–deoxygenation cycle in human red blood cells. A particular attention has been given to the antioxidant activity by using in vitro antioxidant models. Caffeine crosses the erythrocyte membrane and interacts with the two extreme conformational states of haemoglobin (the T and the R-state within the framework of the simple two states allosteric model) with different binding affinities. By promoting the high affinity state (R-state), the caffeine–haemoglobin interaction does enhance the pentose phosphate pathway. This is of benefit for red blood cells since it leads to an increase of NADPH availability. Moreover, caffeine effect on band 3, mediated by haemoglobin, results in an extreme increase of the anion exchange, particularly in oxygenated erythrocytes. This enhances the transport of the endogenously produced CO2 thereby avoiding the production of dangerous secondary radicals (carbonate and nitrogen dioxide) which are harmful to the cellular membrane.  相似文献   

9.
Regulation of fat cell number by apoptosis is proposed to be part of a normal physiological cycle in adipose growth and development. To investigate this process, cultured rat adipocytes were treated with various concentrations of tumor necrosis factor alpha (TNFalpha) and/or insulin to determine the roles of these factors in adipocyte apoptosis. The cells were analyzed by flow cytometry using a TUNEL assay. TNFalpha increased adipocyte apoptosis in a dose-dependent fashion. TNFalpha-mediated apoptosis was detectable within 6 h of treatment and continued to increase with time. Decreasing media insulin concentration from 8.5 to 0.85 nM resulted in increased adipocyte apoptosis, whereas high doses of insulin protected adipocytes from TNFalpha-induced apoptosis. TNFalpha-activated apoptosis was accompanied by an increase in caspase 3 activity and could be inhibited by a caspase 3-specific inhibitor. These data suggest that adipose tissue cell number is regulated, in part, by an apoptotic signaling pathway that involves TNFalpha, insulin, and caspase 3.  相似文献   

10.
XIAP is a mammalian inhibitor of apoptosis protein (IAP). To determine residues within the second baculoviral IAP repeat (BIR2) required for inhibition of caspase 3, we screened a library of BIR2 mutants for loss of the ability to inhibit caspase 3 toxicity in the yeast Schizosaccharomyces pombe. Four of the mutations, not predicted to affect the structure of the BIR fold, clustered together on the N-terminal region that flanks BIR2, suggesting that this is a site of interaction with caspase 3. Introduction of these mutations into full-length XIAP reduced caspase 3 inhibitory activity up to 500-fold, but did not affect its ability to inhibit caspase 9 or interact with the IAP antagonist DIABLO. Furthermore, these mutants retained full ability to inhibit apoptosis in transfected cells, demonstrating that although XIAP is able to inhibit caspase 3, this activity is dispensable for inhibition of apoptosis by XIAP in vivo.  相似文献   

11.
12.
Large cytoplasmic inclusions called aggresomes are seen in many protein conformational diseases including Huntington’s disease and Parkinson’s disease. The roles of inclusions and aggresomes in these diseases are unresolved critical issues that have been vigorously debated. Two recent studies used microtubule disruption with nocodazole to inhibit aggresome formation and observed increased toxicity of expanded polyglutamines in the context of huntingtin exon 1 and a truncated androgen receptor. Increased toxicity of expanded polyglutamines in the presence of nocodazole was correlated with decreased protein turnover, leading the authors to conclude that aggresomes were cytoprotective and that they directly enhanced clearance of the toxic proteins. Here we show that nocodazole has additional effects, which provide a simple alternative explanation for these previous observations. We confirmed aggresome formation in cells expressing proteins with polyalanine and polyglutamine expansions. As expected, we found a reduction in aggresome formation when microtubule function was disrupted using nocodazole. However, in addition to this effect, nocodazole treatment increased the proportions of cells with nuclear inclusions in PC12 cells expressing huntingtin exon 1 with 74 glutamines. This can be explained as nocodazole inhibits autophagosome-lysosome fusion, a key step in mutant huntingtin exon 1 clearance. This effect alone can explain the previous observations with this compound in polyglutamine diseases and raises doubts about the interpretation of some of the data that have been used to argue that aggresomes protect against polyglutamine mutations.  相似文献   

13.
Huntington disease (HD) is an adult onset neurodegenerative disorder characterized by selective atrophy and cell loss within the striatum. There is currently no treatment that can prevent the striatal neuropathology. Transglutaminase (TG) activity is increased in HD patients, is associated with cell death, and has been suggested to contribute to striatal neuronal loss in HD. This work assesses the therapeutic potential of cystamine, an inhibitor of TG activity with additional potentially beneficial effects. Specifically, we examine the effect of cystamine on striatal neuronal loss in the YAC128 mouse model of HD. We demonstrate here for the first time that YAC128 mice show a forebrain-specific increase in TG activity compared with wild-type (WT) littermates which is decreased by oral delivery of cystamine. Treatment of symptomatic YAC128 mice with cystamine starting at 7 months prevented striatal neuronal loss. Cystamine treatment also ameliorated the striatal volume loss and striatal neuronal atrophy observed in these animals, but was unable to prevent motor dysfunction or the down-regulation of dopamine and cyclic adenosine monophsophate-regulated phosphoprotein (DARPP-32) expression in the striatum. While the exact mechanism responsible for the beneficial effects of cystamine in YAC128 mice is uncertain, our findings suggest that cystamine is neuroprotective and may be beneficial in the treatment of HD.  相似文献   

14.
Structural modifications were made to a previously described acyl dipeptide caspase inhibitor, leading to the oxamyl dipeptide series. Subsequent SAR studies directed toward the warhead, P2, and P4 regions of this novel peptidomimetic are described herein.  相似文献   

15.
The P4 region of a series of oxamyl dipeptide caspase inhibitors was optimized by the combination of anti-apoptotic activity in the Jurkat/Fas (JFas) cellular assay and membrane permeability in the PAMPA assay. Two highly potent anti-apoptotic agents with moderate membrane permeability, 29 and 36, showed strong in vivo efficacy in a murine model of α-Fas-induced liver injury.  相似文献   

16.
Intracellular cysteine aspartate-specific proteases (caspases) play both signaling and effector roles in realizing the program of cell death. Caspases function as proteolytic cascades unique for each cell type and signal triggering apoptosis. All parts of the proteolytic cascades are duplicated and controlled by feedback signals. Amplification cycles between pairs of caspases (the third and the sixth, the ninth and the third, the twelfth and the sixth, and others) help multiply the initial apoptotic signal. The presence of physiological inhibitors of apoptosis that directly interact with caspases creates a multilevel regulatory network of apoptosis in cell. The caspase proteolytic cascades are also regulated by sphingolipid secondary messengers, among them ceramide, sphingosine, and their phosphates. Moreover, an association of the caspase signaling with ubiquitin-dependent proteolysis is shown in cells. In particular, the use of extracellular activators and inhibitors of caspases allows irreversible activation of apoptosis in tumor cells or the prevention of neuron death in neurodegenerative diseases.  相似文献   

17.
Ito A  Uehara T  Nomura Y 《FEBS letters》2000,470(3):360-364
Members of the caspase family are essential executors of apoptosis. Caspase-2 has two messenger RNAs generated by alternative splicing, which encode caspase-2L and caspase-2S. Although caspase-2L induces apoptosis, caspase-2S also has the ability to antagonize cell death. Experiments in caspase-2-deficient mice showed that caspase-2 functions to delay cell death in some neuronal populations, suggesting that caspase-2S dominantly acts for cell survival in the brain. However, the mechanism of caspase-2S-mediated anti-apoptotic effect is still unclear. Here, we isolated a protein that interacts with caspase-2S, designated as Ich-1S (caspase-2S)-binding protein (ISBP), by yeast two-hybrid screening using full-length caspase-2S cDNA as a bait. ISBP is identical to the recently isolated calcium and integrin-binding protein, and a small molecule calcium-binding protein with two EF-hand motifs of its C-terminus. In vitro transcribed and translated ISBP interacts specifically with glutathione-S-transferase-fused caspase-2S. Moreover, the interaction between ISBP and caspase-2S was observed in cultured cells. Northern blot analysis indicated that ISBP may be a ubiquitous protein. Interestingly, ISBP can partially inhibit the processing of pro-caspase-2L induced by anti-Fas antibody-treated Jurkat cytosolic lysates. These results suggested that ISBP may be the mediator for the survival function of caspase-2S.  相似文献   

18.
A G Fraser  N J McCarthy    G I Evan 《The EMBO journal》1997,16(20):6192-6199
Caspases are involved in the execution of cell death in all multicellular organisms so far studied, including the nematode worm, fruit fly and vertebrates. While Caenorhabditis elegans has only a single identified caspase, CED-3, whose activity is absolutely required for all developmental programmed cell deaths, most mammalian cell types express multiple caspases with varying specificities. The fruit fly Drosophila melanogaster is genetically tractable, less complex than vertebrates and possesses two known caspases, DCP-1 and drICE. The fly may therefore provide a good model system for examining the hierarchy and relative roles of individual caspases in the execution of apoptosis. We have examined the role of drICE in in vitro apoptosis of the D.melanogaster cell line S2. We show that cytoplasmic lysates made from S2 cells undergoing apoptosis induced by either reaper (rpr) expression or cycloheximide treatment contain a caspase activity with DEVD specificity which can cleave p35, lamin DmO, drICE and DCP-1 in vitro, and which can trigger chromatin condensation in isolated nuclei. Using antibodies specific to drICE, we show that immunodepletion of drICE from these lysates is sufficient to remove most measurable in vitro apoptotic activity, and that re-addition of exogenous drICE to such immunodepleted lysates restores apoptotic activity. We conclude that, at least in S2 cells, drICE can be the sole caspase effector of apoptosis.  相似文献   

19.
The genetic basis of human uniqueness remains one of the most enduring mysteries in biological anthropology. The goal of this research project was to identify, characterize, and infer the origin and function of novel elements in the human genome that are not functionally shared with other apes. Our approach toward this goal was to utilize a variety of genome alignment tools to discover islands of non-conserved DNA sequences, followed by theoretical and computational analysis of those regions using synteny sequence analysis. We discovered families of microRNA genes on human chromosome 21 with no detectable orthologs in the other African apes. We then developed a working model of their origin through repeated rounds of segmental duplication occurring within an array of rRNA genes. Target prediction reveals potential roles for these microRNA genes in the embryonic development of the central nervous system. We conclude that the 21p11 region of human chromosome 21 has undergone segmental duplication events that generated de novo microRNA genes from within a field of rRNA genes. These microRNA genes may have played a role in the unique evolutionary trajectory of the human lineage through their modulation of genes involved in embryonic development.  相似文献   

20.
Delayed wound healing is a chronic problem in opioid drug abusers. We investigated the role chronic morphine plays on later stages of wound healing events using an angiogenesis model. Our results show that morphine treatment resulted in a significant decrease in inflammation induced angiogenesis. To delineate the mechanisms involved we investigate the role of hypoxia inducible factor 1 alpha (HIF-1 alpha), a potent inducer of angiogenic growth factor. Morphine treatment resulted in a significant decrease in the expression and nuclear translocation of HIF-1 alpha with a concurrent suppression in vascular endothelial growth factor (VEGF) synthesis. Cells of the innate immune system play a dominant role in the angiogenic process. Morphine treatment inhibited early recruitment of both neutrophils and monocytes towards an inflammatory signal with a significant decrease in the monocyte chemoattractant MCP-1. Taken together, our studies show that morphine regulates the wound repair process on multiple levels. Morphine acts both directly and indirectly in suppressing angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号