首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
pWW53-4 is a cointegrate between RP4 and the catabolic plasmid pWW53 from Pseudomonas putida MT53, which contains 36 kbp of pWW53 DNA inserted close to the oriV gene of RP4; it encodes the ability to grow on toluene and the xylenes, characteristic of pWW53, as well as resistance to tetracycline, kanamycin and carbenicillin, characteristic of RP4. A physical map of the 36 kbp insert of pWW53 DNA for 11 restriction enzymes is presented, showing that the relative positions of the two xyl operons are different from those on the archetypal TOL plasmid pWW0. The location of the genes for 4-oxalocrotonate decarboxylase (xylI) and 4-oxalocrotonate tautomerase (xylH) were shown by subcloning and enzyme assay to lie at the distal end of the meta pathway operon. Although 2-oxopent-4-enoate hydratase (xylJ) and 4-hydroxy-2-oxovalerate aldolase (xylK) could be detected on a large cloned HindIII fragment, they could not be accurately located on smaller subcloned DNA, but the only credible position for them is between xylF and xylI. The gene order in the meta pathway operon is therefore xylDLEGF(J,K)IH. The regulatory genes xylS and xylR were located close to and downstream of the meta pathway operon, and the restriction map of the DNA in this region, as has previously been shown for the two operons carrying the structural genes, shows similarities with the corresponding region on pWW0. Evidence is also presented for the existence of two promoters, termed P3 and P4, internal to the meta pathway operon which support low constitutive expression of the structural genes downstream in Pseudomonas hosts but not in E. coli.  相似文献   

3.
Fan L  Zhang Y  Qu W  Wang J  Shao W 《Biotechnology letters》2011,33(3):593-598
Three genes, xylA-like, xylA and xylB, were cloned and sequenced from the chromosome of Thermoanaerobacter ethanolicus JW200. xylA and xylB share an operon and encode xylose isomerase and xylulokinase, respectively. The xylA-like gene locates upstream of xylAB operon and encodes a hypothetical protein that lacks xylose isomerase activity. The xylose isomerase was expressed in Escherichia coli and purified by heat treatment and an ion-exchange chromatography. The enzyme had highest activity at 85°C and pH 7.0, and a half-life for 1 h at 85°C. The K (m) and V (max) values for xylose were 11 mM and 25 U/mg, respectively. The high level of expression, easy purification, and thermostability of the XylA from T. ethanolicus JW200 suggests industrial usefulness.  相似文献   

4.
5.
In the oligotrophic freshwater bacterium Caulobacter crescentus, D-xylose induces expression of over 50 genes, including the xyl operon, which encodes key enzymes for xylose metabolism. The promoter (P(xylX)) controlling expression of the xyl operon is widely used as a tool for inducible heterologous gene expression in C. crescentus. We show here that P(xylX) and at least one other promoter in the xylose regulon (P(xylE)) are controlled by the CC3065 (xylR) gene product, a LacI-type repressor. Electrophoretic gel mobility shift assays showed that operator binding by XylR is greatly reduced in the presence of D-xylose. The data support the hypothesis that there is a simple regulatory mechanism in which XylR obstructs xylose-inducible promoters in the absence of the sugar; the repressor is induced to release DNA upon binding D-xylose, thereby freeing the promoter for productive interaction with RNA polymerase. XylR also has an effect on glucose metabolism, as xylR mutants exhibit reduced expression of the Entner-Doudoroff operon and their ability to utilize glucose as a sole carbon and energy source is compromised.  相似文献   

6.
7.
Candida intermedia PYCC 4715 was previously shown to grow well on xylose and to transport this sugar by two different transport systems: high-capacity and low-affinity facilitated diffusion and a high-affinity xylose-proton symporter, both of which accept glucose as a substrate. Here we report the isolation of genes encoding both transporters, designated GXF1 (glucose/xylose facilitator 1) and GXS1 (glucose/xylose symporter 1) respectively. Although GXF1 was isolated by functional complementation of an HXT-null (where Hxt refers to hexose transporters) Saccharomyces cerevisiae strain, isolation of the GXS1 cDNA required partial purification and micro-sequencing of the transporter, identified by its relative abundance in cells grown on low xylose concentrations. Both genes were expressed in S. cerevisiae and the kinetic parameters of glucose and xylose transport were determined. Gxs1 is the first yeast xylose/glucose-H+ symporter to be characterized at the molecular level. Comparison of its amino acid sequence with available sequence data revealed the existence of a family of putative monosaccharide-H+ symporters encompassing proteins from several yeasts and filamentous fungi.  相似文献   

8.
9.
Abstract Thermoanaerobacter thermohydrosulfuricus Rt8.B1 catabolized xylose by the pentose phosphate pathway, and xylose isomerase and xylulokinase were inducible. The uptake of xylose was by two low-affinity, inducible systems. Both systems were resistant to the protonophore, tetrachlorosalicylanilide, the F1F0-ATPase inhibitor, N , N -dicyclohexylcarboiimide, and the sodium/proton antiporter, monensin. The high capacity system (100 nmol min−1 (mg protein)−1) was only expressed when the bacterium was grown with a high concentration of xylose (50 mM). It took more than 60 mM xylose to saturate the high capacity system. When T. thermohydrosulfuricus was grown with a low concentration of xylose (5 mM), xylose uptake was saturated by as little as 10 mM xylose (18 nmol min−1 (mg protein)−1). Cells grown with 50 mM xylose could not transport glucose, and high capacity xylose transport was not inhibited by glucose or non-metabolizable glucose analogues. Cells grown with 5 mM xylose transported glucose at a rapid rate (30 nmol min−1 (mg protein)−1), and low capacity xylose uptake was competitively inhibited by either glucose or 2-deoxy-glucose. Because the glucose uptake of cells grown on 5 mM xylose was competitively inhibited by xylose, it appeared that the low capacity xylose uptake system was a glucose/xylose carrier.  相似文献   

10.
11.
Debaryomyces hansenii is a yeast species that is known for its halotolerance. This organism has seldom been mentioned as a pentose consumer. In the present work, a strain of this species was investigated with respect to the utilization of pentoses and hexoses in mixtures and as single carbon sources. Growth parameters were calculated for batch aerobic cultures containing pentoses, hexoses, and mixtures of both types of sugars. Growth on pentoses was slower than growth on hexoses, but the values obtained for biomass yields were very similar with the two types of sugars. Furthermore, when mixtures of two sugars were used, a preference for one carbon source did not inhibit consumption of the other. Glucose and xylose were transported by cells grown on glucose via a specific low-affinity facilitated diffusion system. Cells derepressed by growth on xylose had two distinct high-affinity transport systems for glucose and xylose. The sensitivity of labeled glucose and xylose transport to dissipation of the transmembrane proton gradient by the protonophore carbonyl cyanide m-chlorophenylhydrazone allowed us to consider these transport systems as proton symports, although the cells displayed sugar-associated proton uptake exclusively in the presence of NaCl or KCl. When the V(max) values of transport systems for glucose and xylose were compared with glucose- and xylose-specific consumption rates during growth on either sugar, it appeared that transport did not limit the growth rate.  相似文献   

12.
Sulfolobus acidocaldarius utilizes glucose and xylose as sole carbon sources, but its ability to metabolize these sugars simultaneously is not known. We report the absence of diauxie during growth of S. acidocaldarius on glucose and xylose as co-carbon sources. The presence of glucose did not repress xylose utilization. The organism utilized a mixture of 1 g/liter of each sugar simultaneously with a specific growth rate of 0.079 h(-1) and showed no preference for the order in which it utilized each sugar. The organism grew faster on 2 g/liter xylose (0.074 h(-1)) as the sole carbon source than on an equal amount of glucose (0.022 h(-1)). When grown on a mixture of the two carbon sources, the growth rate of the organism increased from 0.052 h(-1) to 0.085 h(-1) as the ratio of xylose to glucose increased from 0.25 to 4. S. acidocaldarius appeared to utilize a mixture of glucose and xylose at a rate roughly proportional to their concentrations in the medium, resulting in complete utilization of both sugars at about the same time. Gene expression in cells grown on xylose alone was very similar to that in cells grown on a mixture of xylose and glucose and substantially different from that in cells grown on glucose alone. The mechanism by which the organism utilized a mixture of sugars has yet to be elucidated.  相似文献   

13.
Binding-protein-dependent sugar transport has been investigated in Agrobacterium radiobacter and A. tumefaciens. A. radiobacter contained two high-affinity glucose-binding proteins (GBP1 and GBP2) that additionally bound D-galactose (KD 0.26 microM) and D-xylose (KD 0.04 microM) respectively and were involved in the transport of these sugars. Partial sequencing of GBP1 and GBP2 showed that GBP2 exhibited significant homology with both the arabinose-binding protein (ABP) and the galactose-binding protein (GalBP) from Escherichia coli, whereas GBP1 exhibited significant homology only with ABP. Antiserum raised against GBP1 cross-reacted with GBP1 but not with GBP2, and vice versa. Anti-GBP1 and anti-GBP2 also cross-reacted with proteins corresponding to GBP1 and GBP2 respectively in A. tumefaciens, but little or no cross-reaction was observed with selected members of the Enterobacteriaceae, Rhizobiaceae and Pseudomonadaceae families grown under glucose limitation. GBP1 was less strongly repressed than GBP2 following batch growth of A. radiobacter on various carbon sources. The growth of A. radiobacter for more than approximately 10 generations in continuous culture under galactose or xylose limitation (D 0.045 h-1) led to the emergence of new strains which exhibited increased rates of glucose/galactose or glucose/xylose uptake, and which respectively hyperproduced GBP1 (strain AR18a) or GBP2 (strain AR9a). Similarly, growth of A. tumefaciens for more than approximately 15 generations under glucose or galactose limitation produced new strains which exhibited increased rates of glucose/xylose or glucose/galactose uptake and which respectively hyperproduced proteins analogous to GBP2 (strain AT9) or GBP1 (strain AT18a). It is concluded that growth of Agrobacterium species under carbon-limited conditions leads to the predictable emergence of new strains which specifically hyperproduce the transport system for the limiting nutrient. The GBP1-dependent system of A. radiobacter is unique amongst these transport systems in that the mutations that lead to its hyperproduction under carbon limitation render it least susceptible to repression by excess glucose during ammonia limitation, with the result that succinoglucan exopolysaccharide is produced from glucose at an enhanced rate.  相似文献   

14.
Escherichia coli W3110 was previously engineered to co-utilize glucose and xylose by replacing the wild-type crp gene with a crp* mutant encoding a cAMP-independent CRP variant (Cirino et al., 2006 [Cirino, P.C., Chin, J.W., Ingram, L.O., 2006. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol. Bioeng. 95, 1167-1176.]). Subsequent deletion of the xylB gene (encoding xylulokinase) and expression of xylose reductase from Candida boidinii (CbXR) resulted in a strain which produces xylitol from glucose-xylose mixtures. In this study we examine the contributions of the native E. coli xylose transporters (the d-xylose/proton symporter XylE and the d-xylose ABC transporter XylFGH) and CRP* to xylitol production in the presence of glucose and xylose. The final batch xylitol titer with strain PC09 (Delta xylB and crp*) is reduced by 40% upon deletion of xylG and by 60% upon deletion of both xyl transporters. Xylitol production by the wild-type strain (W3110) expressing CbXR is not reduced when xylE and xylG are deleted, demonstrating tight regulation of the xylose transporters by CRP and revealing significant secondary xylose transport. Finally, plasmid expression of XylE or XylFGH with CbXR in PC07 (Delta xylB and wild-type crp) growing on glucose results in xylitol titers similar to that achieved with PC09 and provides an alternative strategy to the use of CRP*.  相似文献   

15.
We have constructed recombinant Saccharomyces cerevisiae JH1 harboring a xylose reductase gene (xyl1) isolated from Pichia stipitis. However, JH1 still utilizes glucose more easily than xylose. Therefore, in this study, we characterized the effect of a glucose supplement on xylose utilization, the expression level of xylose reductase as a recombinant gene in JH1, and the expression levels of two hexose transporters (Hxt4 and Hxt7) due to co-fermentation of different concentrations of glucose and xylose. Co-fermentation using 20 g/l of glucose increased xylose consumption up to 11.7 g/l, which was 7.9-fold that of xylose fermentation without a glucose supplement. In addition, we found xyl1 mRNA levels dramatically increased as cells grew under co-fermentation conditions with supplementary glucose; this result is consistent with a significant decrease in the xylose concentration 48 h after cultivation. In addition, the expression levels of Hxt4 and Hxt7 were strongly activated by the presence of glucose and xylose; in particular, Hxt7 showed a 2.9-fold increased expression relative to that of recombinant S. cerevisiae JHM with only a backbone vector, pYES2. The results of this study suggest that xylose utilization would be improved by activation of hexose transporters induced by glucose (rather than xylose) reductase expression.  相似文献   

16.
17.
Specific growth rates of Bacteroides thetaiotaomicron NCTC 10582 with either glucose, arabinose, mannose, galactose or xylose as sole carbon sources were 0.42/h, 0.10/h, 0.38/h, 0.38/h and 0.16/h respectively, suggesting that hexose metabolism was energetically more efficient than pentose fermentation in this bacterium. Batch culture experiments to determine whether carbohydrate utilization was controlled by substrate-induced regulatory mechanisms demonstrated that mannose inhibited uptake of glucose, galactose and arabinose, but had less effect on xylose. Arabinose and xylose were preferentially utilized at high dilution rates (D > 0.26/h) in carbon-limited continuous cultures grown on mixtures of arabinose, xylose, galactose and glucose. When mannose was also present, xylose was co-assimilated at all dilution rates. Under nitrogen-limited conditions, however, mannose repressed uptake of all sugars, showing that its effect on xylose utilization was strongly concentration dependent. Studies with individual D-ZU-14C]-labelled substrates showed that transport systems for glucose, galactose, xylose and mannose were inducible. Measurements to determine incorporation of these sugars into trichloroacetic acid-precipitable material indicated that glucose and mannose were the principal precursor monosaccharides. Xylose was only incorporated into intracellular macromolecules when it served as growth substrate. Phosphoenolpyruvate:phosphotransferase systems were not detected in preliminary experiments to elucidate the mechanisms of sugar uptake, and studies with inhibitors of carbohydrate transport showed no consistent pattern of inhibition with glucose, galactose, xylose and mannose. These results indicate the existence of a variety of different systems involved in sugar transport in B. thetaiotaomicron.  相似文献   

18.
19.
Abstract The luxA,B genes from the Gram-negative marine bacterium Vibrio harveyi MAV were used in Staphylococcus carnosus TM300 as a reporter system for regulated expression of xylose utilization. The luciferase genes were fused to the xyl operon from Staphylococcus xylosus C2a. Expression of bioluminescence was induced through addition of xylose and repressed in the presence of glucose. A method to quantitate bioluminescence directly from the culture is described.  相似文献   

20.
The thermotolerant methylotrophic yeast Hansenula polymorpha is able to ferment xylose to ethanol. To improve characteristics of xylose fermentation, the recombinant strain Delta xyl1 Delta xyl2-ADelta xyl2-B, with deletions of genes encoding first enzymes of xylose utilization (NAD(P)H-dependent xylose reductase and NAD-dependent xylitol dehydrogenases, respectively), was constructed and used as a recipient for co-overexpression of the Escherichia coli xylA gene coding for xylose isomerase and endogenous XYL3 gene coding for xylulokinase. The expression of both genes was driven by the H. polymorpha glyceraldehyde-3-phosphate dehydrogenase promoter. Xylose isomerase activities of obtained transformants amounted to approximately 80% of that of the bacterial host strain. Xylulokinase activities of the transformants increased twofold when compared with the parental strain. The recombinant strains displayed improved ethanol production during the fermentation of xylose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号