首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Benzotrichloride (BTC), benzal chloride (BDC), benzyl chloride (BC) and benzoyl chloride (BOC) were surveyed for their mutagenicity in microbial systems such as rec-assay using Bacillus subtilis and reversion assays using E. coli WP2 and Ames Salmonella TA strains with or without metabolic activation in vitro. BTC and BDC required metabolic activation for their mutagenic activities in several strains of E. coli and Salmonella. The mutagenic metabolites of these compounds may not have been produced by hydrolysis. BC was weakly mutagenic without metabolic activation. Only BOC exhibited no mutagenic activity in the detection procedures used. The mutagenic metabolite of BTC might be very unstable under our experimental conditions. The strain E. coli WP2 try hcr was more sensitive than E. coli B/r WP2 try (hcr+) with regard to the mutagenicity of BTC.  相似文献   

2.
We used bacterial mutation assays to assess the mutagenic and co-mutagenic effects of power frequency magnetic fields (MF). For the former, we exposed four strains of Salmonella typhimurium (TA98, TA100, TA1535, TA1537) and two strains of Escherichia coli (WP2 uvrA, WP2 uvrA/pKM101) to 50Hz, 14mT circularly polarized MF for 48h. All results were negative. For the latter, we treated S. typhimurium (TA98, TA100) and E. coli (WP2 uvrA, WP2 uvrA/pKM101) cells with eight model mutagens (N-ethyl-N'-nitro-N-nitrosoguanidine, 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide, 4-nitroquinoline-N-oxide, 2-aminoanthracene, N(4)-aminocytidine, t-butyl hydroperoxide, cumen hydroperoxide, and acridine orange) with and without the MF. The MF induced no significant, reproducible enhancement of mutagenicity. We also investigated the effect of MF on mutagenicity and co-mutagenicity of fluorescent light (ca. 900lx for 30min) with and without acridine orange on the most sensitive tester strain, E. coli WP2 uvrA/pKM101. Again, we observed no significant difference between the mutation rates induced with and without MF. Thus, a 50Hz, 14mT circularly polarized MF had no detectable mutagenic or co-mutagenic potential in bacterial tester strains under our experimental conditions. Nevertheless, some evidence supporting a mutagenic effect for power frequency MFs does exist; we discuss the potential mechanisms of such an effect in light of the present study and studies done by others.  相似文献   

3.
5 oil dispersants and a sample of paraffin were devoid of mutagenic activity in the Ames reversion test, with and without S9 mix, using 7 his- S. typhimurium strains (TA1535, TA1537, TA1538, TA97, TA98, TA100, TA102). However, 3 dispersants produced direct DNA damage in E. coli WP2, which was not repairable in repair-deficient strains (WP2uvrA, CM871, TM1080), as shown by two different DNA-repair test procedures. The uvrA excision-repair system was in all cases the most important mechanism involved in repairing the DNA damage produced by oil dispersants, while the combination of uvrA with other genetic defects (polA, recA, lexA) decreased the efficiency of the system. The observed genotoxic effects were considerably lowered in the presence of S9 mix containing liver S9 fractions from Aroclor-treated rats. The sample of oil dispersant yielding the most pronounced DNA damage in repair-deficient E. coli failed to induce gene sfiA in E. coli (strain PQ37), using the SOS chromotest, or mitotic crossing-over in Saccharomyces cerevisiae (strain D5). The direct toxicity of the oil dispersant to both bacterial and yeast cells was markedly decreased in the presence of rat-liver preparations. These two short-term tests were effective in detecting the genotoxicity of both direct-acting compounds (such as 4-nitroquinoline N-oxide and methyl methanesulfonate) and procarcinogens (such as cyclophosphamide, 2-aminoanthracene and 2-aminofluorene). Moreover, the SOS chromotest was successfully applied to discriminate the activity of chromium compounds as related to their valence (i.e. Cr(VI) genotoxic and Cr(III) inactive). Combination of oil dispersants with Cr(VI) compounds did not affect the direct mutagenicity to S. typhimurium (TA102) of a soluble salt (sodium dichromate) nor did it result in any release of a water-soluble salt (lead chromate), as also confirmed by analytical methods. On the other hand, exposure to sunlight tended to decrease, to a slow rate, the direct genotoxicity of an oil dispersant in the bacterial DNA-repair test.  相似文献   

4.
Two microbial screening test systems for gene (point) mutations, the Salmonella typhimurium assay (TA1535, TA1537, TA1538, TA98 and TA100) and the Escherichia coli WP2 reverse-mutation system (WP2, WP2uvrA, WP2pKM101 and WP2uvrApKM101), were compared with regard to sensitivity toward a broad spectrum of compounds that cause base-pair or frameshift mutations and that have known carcinogenic qualities. Based on available published literature we found that all 44 carcinogens and 9 non-carcinogens examined in both test systems also met with criteria for data acceptance drawn up by us. The results obtained are: firstly, that the Salmonella assay is decidedly better validated than the E. coli WP2 test; and secondly, that the E. coli test system sensitivity (91%) is fully on a par with the sensitivity of the Salmonella assay (72%). This last is in divergence from earlier reports, e.g. Brusick et al. (1980), and this difference must be ascribed to the new plasmid-containing strains. The many compounds not tested in the E. coli department result in fewer false negatives in the E. coli test system and their omission constitutes a bias in favour of the E. coli assay. By eliminating compounds that are negative in Salmonella and dropped from the WP2 analysis owing to insufficient data, the sensitivity of the Salmonella system is raised to 84% as compared with 91% for the WP2 assay. The results further indicate that some of the tester strains are superfluous, and show an exceedingly sensitive test can be performed by combining the best tester strains from the two test systems.  相似文献   

5.
Y Takizawa  N Hachiya 《Mutation research》1984,137(2-3):133-137
Two preparations of maltitol (4-O-alpha-D-glucopyranosyl-D-sorbitol), hydrogenated glucose syrups and maltitol crystal, were examined for genotoxic potential by a battery of short-term tests. In the bacterial reversion assay, maltitol induced no detectable revertants in any of the tester strains, Salmonella typhimurium TA98, TA100, TA1535, TA1537, TA1538, or Escherichia coli WP2/pKM101 at doses of 0.5-50 mg per plate with and without rat liver S9 mix. In the micronucleus test, no significant increase in the frequency of micronucleated erythrocytes was observed in bone marrow of mice after administration of the two preparations at 3.75-30 g per kg by gastric intubation.  相似文献   

6.
Ionizing radiation causes formation of heterogeneous types of damage to DNA. Among those, 5-hydroxymethyl-2'-deoxyuridine (HMdU) was identified as a major thymidine derivative in gamma-irradiated HeLa cells [G.W. Teebor, K. Frenkel and M.S. Goldstein (1984) Proc. Natl. Acad. Sci. (U.S.A.), 81, 318-321]. We report here that HMdU is a strong inducer of lambda prophage in Escherichia coli WP2s(lambda) and is highy mutagenic in Salmonella typhimurium. HMdU causes his+ revertants in strains TA100, which reverts predominantly by base-pair substitution at G-C sites, and TA97, which reverts mainly by frameshift mutation at G-C sites. It does not cause reversion in TA98, another frameshift-sensitive strain, nor in strains TA1535 and TA1537. Of those tested, only the last two strains do not contain pkM101, a plasmid which enhances mutagenic effects of ionizing radiation. HMdU also causes reversion in strains TA102 and TA104, which detect oxidative damage and can revert by base-pair substitution at A-T base pairs at the hisG428 site. We show that HMdU can be incorporated into DNA of TA100 and that, in addition to causing point mutations, it causes suppressor mutations as well. The ability of HMdU to induce lambda prophage and its strong mutagenicity in Salmonella typhimurium provide evidence that the presence of HMdU in DNA is biologically significant and may play a major role in the genetic consequences of ionizing radiation and other types of oxidative damage.  相似文献   

7.
Compounds of various chemical classes were comparatively assayed in the Ames reversion test with his- S. typhimurium strains TA1535, TA157 , TA1538, TA98, TA100, and, in part, TA97 , and in a DNA-repair test with trp- E. coli strains WP2 (repair-proficient), WP67 (uvrA- polA-) and CM871 (uvrA- recA- lexA-). A liquid micromethod procedure for the assessment of the minimal inhibitory concentration (MIC) of test compounds, using the same reagents as the Ames test, was set up and calibrated in its technical details. Other techniques (spot test and treat-and-plate method) were applied to a number of compounds in order to obtain more complete information on their DNA-damaging activity in E. coli. From a qualitative standpoint, the results obtained in the reversion test and in the DNA-repair test (liquid micromethod) were overlapping for 96 (59 positive and 37 negative) out of 135 compounds (71.1%). There was disagreement for 39 compounds (28.9%), 9 of which were positive only in the reversion test (8 requiring metabolic activation and 5 genotoxic in the treat-and-plate method). 30 compounds were positive only in the lethality test, showing a direct DNA-damaging activity, which in half of the cases was completely eliminated by S9 mix. Although the experimental protocol intentionally included several compounds already reported as nonmutagenic carcinogens or as noncarcinogenic mutagens, the overall accuracy was 64.5% for the reversion test and 72.4% for the DNA-repair test, as evaluated for 75 compounds classified according to their carcinogenic activity. Quantitation of results was obtained in the Ames test by relating the net number of revertants to nmoles of compound and in the DNA-repair test by means of a formula relating the difference and ratio of MICs in repair-proficient and -deficient bacteria to nmoles of compound. Following these criteria, the genotoxic potency varied over a 4.5 X 10(7)-fold range among compounds positive in the reversion test and over a 6 X 10(9)-fold range among compounds damaging E. coli DNA. The genotoxic potencies in the two bacterial systems were correlated within the majority of the chemical classes under scrutiny.  相似文献   

8.
In relation to the observed association of carcinogenesis with parasitic infections, the mutagenicity of extracts of Schistosoma japonicum and Clonorchis sinensis was examined. In the bacterial mutagenicity tests using the Ames Salmonella typhimurium strains TA98, TA100, TA97 and TA102, and Escherichia coli WP2 and WP2 uvrA pKM101 Schistosoma soluble egg antigen and a homogenate of adult Schistosoma worms showed no positive responses either in the presence or in the absence of S9 mix. Likewise, adult worm extracts of Clonorchis showed no mutagenicity. The Schistosoma soluble egg antigen showed a weak but significant activity for the induction of Epstein-Barr virus expression in viral genome-carrying human lymphoblastoid cells in culture. This phenomenon suggests that the soluble egg antigen possesses tumor-promoting activity.  相似文献   

9.
The drug antipyrine and its 4-substituted analogs, 4-aminoantipyrine, 4-dimethylaminoantipyrine (aminopyrine) and 4-nitrosoantipyrine were tested for mutagenicity against the screening array of Salmonella typhimurium tester strains TA100, TA98, TA97, TA102 and TA104. Antipyrine and aminopyrine were nonmutagenic to all 5 tester strains even in the presence of S9. 4-Aminoantipyrine was directly mutagenic to TA97 only and the presence of S9 slightly increased its activity. 4-Nitrosoantipyrine was directly mutagenic to all tester strains used and S9 decreased its activity except with strain TA102. The possible long-term hazards of C-nitroso compounds derived from drugs and dietary constituents are discussed in view of their pluripotent direct genotoxicity.  相似文献   

10.
Erythrosine (diNa, tetraiodofluorescein) was nonmutagenic to the Ames/Salmonella typhimurium strains TA97a, TA98, TA100, TA102, and TA104, to a concentration of 2 mg/plate. No mutative intermediates were detected on metabolism by rat caecal cell-free extracts or rat liver S9 mixture; or on incubation with the comutagens, harman and norharman (+/- S9). Instead, an unexpected dose-dependent suppression in spontaneous reversion frequencies was observed (maximum approximately equal to 35% decrease). Erythrosine was antimutagenic to benzo[a]pyrene, but it did not decrease the mutagenicity of the other adduct-forming mutagen, 4-nitroquinoline N-oxide. The food dye was strongly antimutagenic to the bifunctional alkylating agent, mitomycin C, though it did not exhibit a similar effect on the mutagenicity of the corresponding monofunctional agent, methyl methanesulphonate. It partially depressed the mutagenic potentials of sodium azide. The antimutagenic effect of erythrosine on an intercalating agent, ethidium bromide, was discernible only at the highest dose (2 mg/plate). These results have been interpreted in terms of a genointeractive role of erythrosine. Erythrosine produced differential toxic effects in repair-deficient (TA97a, TA98, TA100) and repair-proficient (TA102, TA104) Salmonella tester strains; survival of the repair-deficient strains was found to be decreased. Photoinduced potentiation of erythrosine toxicity was observed, although light irradiation in the presence of erythrosine did not modify the reversion frequencies of the tester strains. The evidence strongly suggests that erythrosine, which exhibits nonmutagenicity in the Ames/Salmonella test, can interact with DNA repair enzymes and/or with DNA.  相似文献   

11.
Many metals have been shown to alter the function of a wide range of enzyme systems, including those involved in DNA repair and replication. To assess the impact in vivo of such metal actions a "Microtitre" fluctuation assay was used to examine the ability of Ni(II) to act as a comutagen with simple alkylating agents. In E. coli, Ni(II) chloride potentiated the mutagenicity of methyl methanesulfonate (MMS) in polymerase-proficient strains (WP2+ and WP2-), but not in polA- strains (WP6 and WP67) or in lexA- (CM561) or recA- (CM571) strains. The absence of UV excision repair (WP2- and WP67) had little, if any, effect. An extended lag phase was seen at 2-4 h in the polA- strains following treatment with Ni(II) chloride and MMS, but normal growth resumed thereafter. Results suggested that mutations induced by MMS were fixed during log phase growth and that more than 2 h of exposure were necessary for potentiation by Ni(II) to be observed. Thus, the extended lag phase probably cannot explain the lack of potentiation. RecA-dependence of the comutagenic effect was corroborated with S. typhimurium TA1535 and TA100. Only in the pKM101 containing strain, TA100, was potentiation of ethyl methanesulfonate (EMS) and MMS by Ni(II) chloride evident. The mucAB genes carried on pKM101 increase the sensitivity of TA100 to a variety of mutagens, providing there is a functional recA gene product. Taken together, the data suggest that Ni(II) acts indirectly, as a comutagen, in bacterial systems, possibly affecting processes involving recA- and/or polA-dependent function(s).  相似文献   

12.
In a comparative study on 135 compounds of various chemical classes, 30 agents inducing direct nonreparable DNA damage in repair-deficient E. coli failed in reverting strains TA1535, TA1537, TA1538, TA98 and TA100 of S. typhimurium (De Flora et al., 1984b). These compounds were re-assayed in the Ames test using strains TA97 and TA102. A dose-dependent mutagenic response was detected with aminoantipyrine and p-rosaniline in TA97 and with streptomycin and formaldehyde in TA102. p-Rosaniline was the only mutagen requiring metabolic activation. 5 compounds, i.e. o-aminophenol in TA97 and methanol, ethanol, cadmium chloride and cadmium sulfate in TA102, induced a reproducible increase in revertants over controls, but this was less than 2-fold. The remaining 21 chemicals--including amino compounds, aliphatics, aromatics, heterocycles, hydrazine derivatives and inorganics--confirmed their inactivity in the Ames test. Overall data for 135 compounds, comparing the Ames test (7 strains) and the DNA-repair test (3 strains), are re-assessed on the basis of these findings.  相似文献   

13.
Api AM  San RH 《Mutation research》1999,446(1):67-81
6-Acetyl-1,1,2,4,4,7-hexamethyltetraline (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-ben zopyran (HHCB), synthetic fragrance ingredients, were evaluated for potential genotoxicity in a battery of short-term tests. Salmonella typhimurium/Escherichia coli plate incorporation and liquid preincubation assays were conducted on AHTN using tester strains TA97, TA98, TA100, TA102, TA1535, TA1537 and WP2 uvrA +/- S9 activation at doses from 8 to 5000 micrograms/plate. The plate incorporation mutagenicity assay was conducted on HHCB using tester strains TA98, TA100, TA1535, TA1537, TA1538 and WP2 uvrA +/- S9 activation at doses from 10 to 5000 micrograms/plate. An in vitro cytogenetics assay in Chinese hamster ovary (CHO) cells was conducted with AHTN and HHCB at three concentrations each with +/- S9 activation. In the non-activated study, the exposure/harvest periods were 4/20-, 20/20- and 44/44-h. In the S9 activated study, the exposure/harvest periods were 4/20- and 4/44-h. In vitro unscheduled DNA synthesis (UDS) assays were conducted in primary rat hepatocytes at concentrations between 0.15 and 50 micrograms/ml for AHTN and HHCB. In vivo mouse micronucleus assays were conducted with high doses of 1600 mg AHTN/kg and of 1500 mg HHCB/kg in corn oil. No positive responses were observed in any of the tests with HHCB. With AHTN, no positive responses were observed except for cells with structural aberrations in the in vitro cytogenetics assay in CHO cells with S9 activation at the treatment/harvest time of 4/20 h. In initial studies with AHTN, the high dose of 7.8 micrograms/ml showed 0.5% aberrant cells, with the mitotic index at 41% relative to vehicle control and cell growth inhibition in the range of 25-50%. Thus the genotoxicity findings with AHTN were limited to this one positive response; all other genotoxicity tests with AHTN were considered as negative. In particular, the negative finding in the in vivo assay supports AHTN as not likely to be mutagenic in mammalian systems. These considerations, along with other negative published data, lead to the conclusion that both AHTN and HHCB do not have significant potential to act as genotoxic carcinogens.  相似文献   

14.
15.
A total of 228 pesticides (88 insecticides, 60 fungicides, 62 herbicides, 12 plant-growth regulators, 3 metabolites and 3 other compounds) was tested for mutagenicity in bacterial reversion-assay systems with 5 strains (TA100, TA98, TA1535, TA1537 and TA1538) of Salmonella typhimurium and a strain (WP2 hcr) of Escherichia coli. 50 pesticides (25 insecticides, 20 fungicides, 3 herbicides, 1 plant-growth regulator and 1 other compound) were found to be mutagenic. 5 of them required metabolic activation (S9 mix) for their activities. Among various chemical groups, organic phosphates, halogenated alkanes and dithiocarbamates showed higher ratios of mutagens. Although 22 of the pesticides tested have been reported to be carcinogenic, 7 of them, i.e., captain, DBCP, EDB, EDC, ETU, HEH and nitrofen, were detected as mutagens in the present assay. Most of the other 15 non-mutagenic carcinogens were organochlorine pesticides such as alpha-BHC, chlorobenzilate, p,p'-DDT, dieldrin and quintozene.  相似文献   

16.
The genotoxic properties of nitrofurazone and furazolidone were studied using the Ames test and SOS-chromotest. Both compounds were found to act as strong mutagens on the TA97 and TA102 strains of S. typhimurium and to induce the SOS-repair system in the PQ37 strain of E. coli. A good concordance was found between the mutagenic activity and the ability to induce the SOS system. Ascorbic acid and sodium selenite only very slightly lowered the genotoxic effect of the 2 nitrofurans studied both in the Ames test and in the SOS-chromotest.  相似文献   

17.
The mutagenic activity and related biological properties of Br-, Cl-, NO2- and CH3-derivatives of 1-(phenyl)-3,3-dimethyltriazene were investigated in Salmonella/microsome assays with standard and preincubation metabolic activation and in the repair test using Salmonella and E. coli B/r. In the repair test, the CH3-derivative was slightly positive in the E. coli recA and uvrA repair system, the NO2-derivative had a killing effect on Salmonella typhimurium uvrB-deficient strains. In Salmonella mutagenicity assays, all tested triazene derivatives reverted frameshift tester strains, especially TA1537. The highest number of frameshift mutations was induced by the CH3-derivative in the presence of a standard metabolic activation system; direct mutagenicity of this derivative was weak, reaching about the same level of activity as seen after preincubation. The only test compound that induced mutations of the base-substitution type was the NO2-derivative; this derivative showed the highest mutagenicity when activated by preincubation.  相似文献   

18.
The bacterial tryptophan reverse mutation assay with Escherichia coli WP2   总被引:2,自引:0,他引:2  
The Escherichia coli WP2 tryptophan reverse mutation assay detects trp(-) to trp(+) reversion at a site blocking a step in the biosynthesis of tryptophan prior to the formation of anthranilic acid. The different WP2 strains all carry the same AT base pair at the critical mutation site within the trpE gene. The assay is currently used by many laboratories in conjunction with the Ames Salmonella assay for screening chemicals for mutagenic activity. In general the WP2 strains are used as a substitute for, or as an addition to Salmonella strain TA102 which also carries an AT base pair at the mutation site. The assay is also recommended together with the Ames assay for data submission to regulatory agencies. National and international guidelines have been established for performing these mutagenicity assays.The E. coli WP2 assay procedures are the same as those described elsewhere in this volume for the Ames Salmonella assay (Mortelmans and Zeiger, 2000) with the exception that limited tryptophan instead of limited histidine is used. This chapter is an addendum to the previous chapter and the reader should refer to the previous chapter for details regarding experimental procedures and assay design.  相似文献   

19.
Azide mutagenicity involves the requisite formation of the putative novel aminoacid metabolite, beta-azidoalanine. The role of this metabolite, however, is unclear. In order to confirm the identity of this metabolite and provide additional information on possible stereochemical requirements for mutagenicity, authentic racemic and L-azidoalanine were synthesized by an unambiguous route and tested for mutagenicity in Salmonella typhimurium TA100, TA1535, hisG46 and Escherichia coli WP2-. A marked antipodal potency ratio was observed in strains TA100 and TA1535 when racemic and L-azidoalanine were compared. The mutagenic activity resided primarily in the L-isomer. The molar potency of L-azidoalanine in TA100 and TA1535 was nearly identical to that of azide. The lack of mutagenic response for racemic or L-azidoalanine in hisG46 and E. coli WP2- was like that reported for azide and is consistent with similar modes of action for these agents.  相似文献   

20.
We previously reported the development of mutation-specific Escherichia coli B tester strains WP3101 to WP3106 from strain WP2uvrA. In this study we constructed their pKM101-containing derivatives WP3101P to WP3106P, and further isolated their rfa derivatives WP4101-WP4106 and WP4101P-WP4106P. The six kinds of F' plasmids (lacI-, lacZ-, proAB+), each of which carries a different lacZ allele, contained in the above strains were originally derived from E. coli K-12 strains CC101-CC106. All the tester strains show Lac- and Trp- phenotype. Assays for transitions and transversions are based upon Lac+ reversion of a specific mutation located within the lacZ gene on an F' plasmid. The trpE65(ochre) allele in the same strains enables them to be used for Trp+ reversion assays as well. In the present paper, we evaluated the sensitivity, specificity, and usefulness of the newly developed tester strains. Strains WP3101P-WP3106P were highly sensitive to determine mutational profile of heterocyclic amines with S9 mix-mediated metabolic activation and most of the oxidative mutagens and free radical generators tested. Every type of base-pair substitutions induced by 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) or 5-diazouracil were detected in strains WP3101P-WP3106P, while A:T-->C:G and G:C-->A:T mutations induced by MeIQ, and A:T-->C:G, G:C-->A:T, and G:C-->C:G by 5-diazouracil were not detected in pKM101-free tester strains. In pKM101-carrying strains, cumene hydroperoxide induced all types of base substitutions, while formaldehyde preferentially induced G:C-->T:A transversions. Phenazine methosulfate induced predominantly G:C-->A:T transitions and G:C-->T:A transversions, while H2O2 induced predominantly G:C-->T:A and A:T-->T:A transversions. Introduction of the rfa mutation considerably enhanced sensitivity to bulky mutagens such as polycyclic aromatic compounds. All six possible base substitutions induced by 9, 10-dimethyl-1,2-benzanthracene (DMBA) were detected in tester strains WP4101P-WP4106P. In conclusion, our tester strains WP3101P-WP3106P and WP4101P-WP4106P permitted rapid and simple detection of specific mutations induced by variety of mutagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号