首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five chloroplast DNA (ctDNA) types (W, T, C, S, and A) have previously been identified in the Andean tetraploid cultivated potatoes (Solanum tuberosum ssp. andigena) and three types (C, S, and A) in diploid cultivated potatoes (S. stenotomum). In this study, ctDNA types were determined for an additional 35 accessions of S. stenotomum and 97 accessions of putative ancestral wild species (15 of S. brevicaule, 26 of S. bukasovii, 4 of S. candolleanum, 25 of S. canasense, 17 of S. leptophyes, and 10 of S. multidissectum). The first five ctDNA types were also identified in S. stenotomum. The wild species were also polymorphic for ctDNA types except for S. brevicaule, which had only W-type ctDNA. T-type ctDNA was not found in any of the wild species and could have originated from W-type ctDNA after S. stenotomum arose. The other types of ctDNA evolved in wild species. The geographical distribution of each ctDNA type indicated that A-type ctDNA arose in central Peru and T-type ctDNA in the Bolivia-Argentine boundary. It is implied that potatoes were successively domesticated and that, in parallel, several wild species were differentiated from time to time and place to place from the ancestral species complex. Subsequent sexual polyploidization formed a wide ctDNA diversity among the Andean tetraploid potatoes, and selection from them formed the limited ctDNA diversity found in Chilean tetraploid potatoes (ssp. tuberosum).Hawkes' (1990) classification system is tentatively adopted throughout this text. Synonyms indicated by Hawkes (1990) for the species names described by various authors are presented in parentheses.  相似文献   

2.
The major cultivated potato, Solanum tuberosum, and six other related cultivated species, are hypothesized to have arisen from a group of weedy relatives indigenous to the central Andes of central Peru, Bolivia, and northern Argentina. A major problem hindering investigations of the origins of the cultivated species has been a continuing debate over the species boundaries of their putative progenitors. This study investigated the morphological phenetic species boundaries of these putative progenitors and five cultivated taxa, here collectively referred to as the Solanum brevicaule complex. Two hundred fifteen accessions of 30 taxa in the S. brevicaule complex and 42 accessions of six taxa outside of the complex were assessed for 53 morphological traits in replicate plots in a common garden, resulting in a total of over 81;t3000 data points. Phenetic analyses of these data are unable to support 30 taxa, suggesting instead a single variable complex at best only weakly divided into three widely intergrading sets of populations: (1) Peruvian and geographically adjacent Bolivian accessions (including wild species and all the cultigens), (2) Bolivian and Argentinian accessions and S. verrucosum from Mexico (including only wild species), and (3) the Bolivian and Argentinian wild species S. oplocense. These and other data suggest that Hawkes's 1990 treatment (The Potato: Evolution, Biodiversity, and Genetic Resources, Smithsonian Institute Press, Washington, DC.) of 232 morphological species is an overestimate for sect. Petota.  相似文献   

3.
Species of the E. trachycaulus complex species are known for their morphological variability, but little is known about their genetic basis. The delimitation of taxa within the complex has been controversial and difficult. E. trachycaulus is predominantly self-pollinating, and lacks clear morphological boundaries between it and E. alaskanus. Another controversial taxonomic issue of E. trachycaulus is the relationships of this complex species to non-North American E. caninus. The objectives of this study were to examine genetic diversity and the systematic relationships among the species of the E. trachycaulus complex and their relationships with E. caninus, E. alaskanus and E. mutabilis. Random amplified polymorphic DNA method was used to study 35 accessions of E. trachycaulus complex and other Elymus species. Higher genetic variation was detected within species of E. trachycaulus complex. Eurasian accessions are as variable as the North American ones. Both UPGMA and NJ analyses did not show clearly separation among species of the E. trachycaulus complex. No clear association between geographic origin and genetic grouping among these species was found. Eurasian E. trachycaulus probably originated from multiple North American populations.  相似文献   

4.
Summary Ninety-three accessions representing 21 species from the genus Oryza were examined for restriction fragment length polymorphism. The majority (78%) of the accessions, for which five individuals were tested, were found to be monomorphic. Most of the polymorphic accessions segregated for only one or two probes and appeared to be mixed pure lines. For most of the Oryza species tested, the majority of the genetic variation (83%) was found between accessions from different species with only 17% between accessions within species. Tetraploid species were found to have, on average, nearly 50% more alleles (unique fragments) per individual than diploid species reflecting the allopolyploid nature of their genomes.Classification of Oryza species based on RFLPs matches remarkably well previous classifications based on morphology, hybridization and isozymes. In the current study, four species complexes could be identified corresponding to those proposed by Vaughan (1989): the O. ridleyi complex, the O. meyeriana complex, the O. officinalis complex and the O. sativa complex. Within the O. sativa complex, accessions of O. rufipogon from Asia (including O. nivara) and perennial forms of O. rufipogon from Australia clustered together with accessions of cultivated rice O. sativa. Surprisingly, indica and japonica (the two major subspecies of cultivated rice) showed closer affinity with different accessions of wild O. Rufipogon than to each other, supporting a hypothesis of independent domestication events for these two types of rice. Australian annual wild rice O. meridionalis (previously classified as O. rufipogon) was clearly distinct from all other O. rufipogon accessions supporting its recent reclassification as O. meridionalis (Ng et al. 1981). Using genetic relatedness as a criterion, it was possible to identify the closest living diploid relatives of the currently known tetraploid rice species. Results from these analyses suggest that BBCC tetraploids (O. malampuzhaensis, O. punctata and O. minuta) are either of independent origins or have experienced introgression from sympatric C-genome diploid rice species. CCDD tetraploid species from America (O. latifolia, O. alta and O. grandiglumis) may be of ancient origin since they show a closer affinity to each other than to any known diploid species. Their closest living diploid relatives belong to C genome (O. eichingeri) and E genome (O. Australiensis) species. Comparisons among African, Australian and Asian rice species suggest that Oryza species in Africa and Australia are of polyphyletic origin and probably migrated to these regions at different times in the past.Finally, on a practical note, the majority of probes used in this study detected polymorphism between cultivated rice and its wild relatives. Hence, RFLP markers and maps based on such markers are likely to be very useful in monitoring and aiding introgression of genes from wild rice into modern cultivars.  相似文献   

5.
Sun G  Tang H  Salomon B 《Genetica》2006,127(1-3):55-64
The morphological similarity of Elymus trachycaulus to the Eurasian E. caninus has often been noted. This has lead to controversial and contradicting taxonomic treatments. Nevertheless, there has been no systematic investigation on molecular genetic similarity between E. trachycaulus and E. caninus. In this study, random amplified polymorphic DNA (RAPD) analysis was used to study the similarity between the two species. RAPD analysis of 38 samples representing E. caninus and E. trachycaulus complex yielded 111 interpretable RAPD bands. The Jaccard’s similarity values for E. caninus ranged from 0.38 between accessions H10345 and H10353 to 0.97 between accessions H8745 and H10096, with an average of 0.67. The Jaccard’s similarity values for E. trachycaulus complex ranged from 0.09 between E. trachycaulus ssp. subsecundus (PI 537321) and E. trachycaulus ssp. violaceus (PI 272612) to 0.78 between accessions PI 315368 and PI 372644, with an average of 0.43. The results from different analyses (NJ and PCA) were similar but not identical. The molecular genetic separation between E. caninus and E. trachycaulus was consistent. The PCA analysis clearly separated all E. caninus accessions from E. trachycaulus and its subspecies. The NJ analysis also showed separation between most accessions of E. caninus and E. trachycaulus. Further analysis excluding E. trachycaulus ssp. subsecundus and ssp. violaceus revealed that E. caninus species and E. trachycaulus species were clearly separated into two distinct groups. The RAPD data thus support the treatment of E. caninus and E. trachycaulus as distinct species. The analyses further indicate that E. violaceus is nested within E. trachycaulus, and more related to E. trachycaulus complex rather than to E. caninus.  相似文献   

6.
Phylogenetic relationship between O. malampuzhaensis Krish. et Chand. (2n = 4x = 48; Poaceae, Oryzeae), a South Indian endemic wild rice with a disputed taxonomic identity, and eight other species belonging to the O. officinalis complex of the genus Oryza was examined using 62 morphological characters and 445 random amplified polymorphic DNA (RAPD) markers. Multivariate and cluster analyses using both the data sets clearly separated all accessions of O. malampuzhaensis into a distinct group. Genetic distances between O. malampuzhaensis and other species in O. officinalis complex were comparable with the distance between any other two taxa with species rank in this complex. Case-by-case taxonomic treatment of O. malampuzhaensis in relation to other species examined is presented. A taxonomic key for the discrimination of O. malampuzhaensis from other species in the O. officinalis complex has been constructed. Based on the present results, we strongly argue to restore the species rank to O. malampuzhaensis, as originally proposed by Krishnaswamy and Chandrasekharan (1958).  相似文献   

7.
The Solanum brevicaule complex contains about 20 species of diploids (2n = 2x = 24), tetraploids (2n = 4x = 48) and hexaploids (2n = 6x = 72), distributed from central Peru south to northwestern Argentina. The complex is defined entirely by morphological similarity of its constituent members, which are very similar to each other and to some landraces of the cultivated potato, Solanum tuberosum. Conflicting taxonomic treatments are common among authors. Species boundaries within the complex have been studied with morphological phenetics from germplasm accessions planted in a field plot in the north central US, and with molecular marker data from RAPDs, low-copy nuclear RFLPs, and AFLPs. The present study compares these results with an additional replicated morphological study of the same germplasm accessions in a greenhouse environment in the high Andes of central Peru. The results support extensive reduction of species in the complex.  相似文献   

8.
Origin of chloroplast DNA diversity in the Andean potatoes   总被引:1,自引:1,他引:0  
Summary Wide chloroplast DNA (ctDNA) diversity has been reported in the Andean cultivated tetraploid potato, Solanum tuberosum ssp. andigena. Andean diploid potatoes were analyzed in this study to elucidate the origin of the diverse ctDNA variation of the cultivated tetraploids. The ctDNA types of 58 cultivated diploid potatoes (S. stenotomum, S. goniocalyx and S. phureja), 35 accessions of S. sparsipilum, a diploid weed species, and 40 accessions of the wild or weed species, S. chacoense, were determined based on ctDNA restriction fragment patterns of BamHI, HindIII and PvuII. Several different ctDNA types were found in the cultivated potatoes as well as in weed and wild potato species; thus, intraspecific ctDNA variation may be common in both wild and cultivated potato species and perhaps in the higher plant kingdom as a whole. The ctDNA variation range of cultivated diploid potatoes was similar to that of the tetraploid potatoes, suggesting that the ctDNA diversity of the tetraploid potato could have been introduced from cultivated diploid potatoes. This provided further evidence that the Andean cultivated tetraploid potato, ssp. andigena, could have arisen many times from the cultivated diploid populations. The diverse but conserved ctDNA variation noted in the Andean potatoes may have occurred in the early stage of species differentiation of South American tuber-bearing Solanums.  相似文献   

9.
Summary The taxonomic relationships between 52 accessions of 12 Vicia species and three accessions of Lathyrus were examined using nuclear RFLP- and PCR-generated data. Two hundred and sixty informative restriction fragments or amplification products were analysed by single linkage analysis, average cluster analysis, and the Wagner parsimony method. Dendrograms constructed from each type of analysis showed similar overall topologies and could be divided into three parts corresponding respectively to the Lathyrus outgroup, the species grouped in the section Faba/narbonemis complex, and the species belonging to the sections Hypechusa and Peregrinae. With few exceptions, the majority of accessions belonging to one species grouped together before branching to other species. An analysis of mitochondrial DNA phenotypes was both consistent with and complemented the results from the nuclear data. Overall, the species relationships show a good correlation with the classification of Maxted et al. but suggest that V. faba is more closely aligned to species from the sections Hypechusa and Peregrinae than to those in the narbonensis complex. In addition, the position of two new species, V. kalakhensis and V. eristaloides, as members of the narbonensis complex was supported by the molecular data, which also allowed a preliminary classification for recently collected Vicia accessions.  相似文献   

10.
Summary Phylogenetic relationship of the cultivated rices Oryza sativa and O. glaberrima with the O. perennis complex, distributed on the three continents of Asia, Africa and America, and O. australiensis has been studied using Fraction 1 protein and two repeated DNA sequences as markers. Fraction 1 protein isolated from the leaf tissue of accessions of different species was subjected to isoelectric focusing. All the species studied have similar nuclear-encoded small subunit polypeptides and chloroplast-encoded large subunit polypeptides, except two of the O. perennis accessions from South America and O. australiensis, which have a different pattern for the chloroplast subunit. Two DNA sequences were isolated from Eco R1 restriction endonuclease digests of total DNA from O. sativa. One of the sequences has been characterized as highly repeated satellite DNA, and the other one as a moderately repeated DNA sequence. These sequences were used as probes in DNA/DNA hybridization with restriction endonuclease digested DNA from some accessions of the different species. Those accessions that are divergent for large subunit polypeptides of Fraction 1 protein (O. australiensis and two of the four South American O. perennis accessions) also lack the satellite DNA and have a different hybridization pattern with the moderately repeated sequence. All other accessions, irrespective of their geographical origin, are similar. We propose that various accessions of O. perennis from Africa and Asia are closely related to O. sativa and O. glaberrima, and that the dispersal of cultivated and O. perennis rices to different continents may be quite recent. The American O. perennis is a heterogeneous group. Some of the accessions ascribed to this group are closely related to the Asian and African O. perennis, while others have diverged.  相似文献   

11.
Michael Nee 《Brittonia》1994,46(4):265-269
Talauma boliviana is described as new and illustrated. This species, first collected in 1989, is the only Magnoliaceae known from Bolivia. It seems to be most closely related toT. sambuensis of northwestern Colombia and eastern Panama.  相似文献   

12.
Principal component and canonical variate analyses were used to analyse the variation of 34 morphological characters measured in 98 accessions ofTulipa subg.Tulipa, formerly known as sect.Leiostemones. In addition 43 accessions were analysed cytogenetically by means of C-banding methods. Based on the encountered variation and on geographical distribution data 30 species in five sections were recognized, of which the synonymy is stated. Seven new series in two different sections have been designated.  相似文献   

13.
Crop-to-wild introgression may play an important role in evolution of wild species. Asian cultivated rice (Oryza sativa L.) is of a particular concern because of its cross-compatibility with the wild ancestor, O. rufipogon Griff. The distribution of cultivated rice and O. rufipogon populations is extensively sympatric, particularly in Asia where many wild populations are surrounded by rice fields. Consequently, gene flow from cultivated rice may have a potential to alter genetic composition of wild rice populations in close proximity. In this study, we estimated introgression of cultivated rice with O. rufipogon based on analyses of 139 rice varieties (86 indica and 53 japonica ecotypes) and 336 wild individuals from 11 O. rufipogon populations in China. DNA fingerprinting based on 17 selected rice simple sequence repeat (SSR) primer pairs was adopted to measure allelic frequencies in rice varieties and O. rufipogon samples, and to estimate genetic associations between wild and cultivated rice through cluster analysis. We detected consanguinity of cultivated rice in O. rufipogon populations according to the admixture model of the STRUCTURE program. The analyses showedz that four wild rice populations, DX-P1, DX-P2, GZ-P2, and HL-P, contained some rare alleles that were commonly found in the rice varieties examined. In addition, the four wild rice populations that scattered among the rice varieties in the cluster analysis showed a closer affinity to the cultivars than the other wild populations. This finding supports the contention of substantial gene flow from crop to wild species when these species occur close to each other. The introgressive populations had slightly higher genetic diversity than those that were isolated from rice. Crop-to-wild introgression may have accumulative impacts on genetic variations in wild populations, leading to significant differentiation in wild species. Therefore, effective measure should be taken to avoid considerable introgression from cultivated rice, which may influence the effective in-situ conservation of wild rice species.  相似文献   

14.
The neotropical genusExostema comprises 25 species of trees and shrubs, ranging in distribution from Bolivia to Mexico and throughout the West Indies, with most species endemic to the Greater Antilles. Infrageneric relationships and species-level patterns of evolution were investigated in phylogenetic analyses using morphological, molecular, and combined data sets. All data sets resolved three main species groups which correspond to the three sections recognized byMcDowell (1996). However, the analyses of ITS sequence data placed the two South American species basal to the three main clades. Otherwise, the morphological and molecular data are highly compatible, and produce a more robust yet consistent phylogeny in the combined data analysis. Morphological evolution inExostema involves many specializations for xeric habitats, reflecting repeated ecological shifts from moist forest to exposed, seasonally dry environments during the diversification of the genus. Both moth and bee pollination syndromes are found inExostema, and shifts in pollination ecology appear pivotal to the differentiation of the three sections. Biogeographically,Exostema likely originated in South America and migrated via Central America to the Greater Antilles, where the morphological diversification and speciation are most extensive.  相似文献   

15.
The genus Arachis contains a large number of species and undescribed taxa with patterns of genetic variation that are little understood. The objectives of this investigation were to estimate genetic diversity among species of Arachis by utilizing electrophoretic techniques and to establish the potential for use of isozymes as markers for germplasm introgression. One-hundred-and-thirteen accessions representing six of the seven sections of the genus were analyzed for isozyme variation of 17 enzymes. Section Rhizomatosae species were not included because they produce very few seeds. Seeds were macerated and the crude extract was used for starch-gel electrophoretic analyses. Although the cultivated species has few polymorphic isozymes, the diploid species are highly variable and two-to-six bands were observed for each isozyme among accessions. Because of the large number of isozyme differences between A. hypogaea and A. batizocoi (the presumed donor of the B genome), this species can no longer be considered as a progenitor of the cultivated peanut. Seed-to-seed polymorphisms within many accessions were also observed which indicate that germplasm should be maintained as bulk seed lots, representative of many individuals, or as lines from individual plants from original field collections. The area of greatest interspecific genetic diversity was in Mato Grosso, Brazil; however, the probability of finding unique alleles from those observed in A. hypogaea was greatest in north, north-central, south and southeast Brazil. The large number of polymorphic loci should be useful as genetic markers for interspecific hybridization studies.  相似文献   

16.
Isozyme polymorphism and phylogenetic interpretations in the genus Cicer L.   总被引:2,自引:0,他引:2  
Summary Allozyme variation among 50 accessions representing the cultivated chickpea (Cicer arietinum L.) and eight wild annual Cicer species was scored and used to assess genetic diversity and phylogeny. Sixteen enzyme systems revealed 22 putative and scorable loci of which 21 showed polymorphism. Variation was prevalent between species (Dst = 0.510) but not within species (Hs = 0.050). No variation for isozyme loci was detected in the cultivated chickpea accessions. Cicer reticulatum had the highest proportion of polymorphic loci (0.59) while the loci Adh-2 and Lap were the most polymorphic over all the species accessions. The phylogeny of annual Cicer species, as determined by allozyme data, generally corroborated those based on other characters in previous studies. Cicer arietinum, C. reticulatum and C. echinospermum formed one cluster, while C. pinnatifidum, C. bijugum and C. judaicum formed another cluster. Cicer chorassanicum was grouped with C. yamashitae, whereas C. cuneatum formed an independent group and showed the largest genetic distance from C. arietinum.  相似文献   

17.
Arachis batizocoi Krap. & Greg. is a suggested B genome donor to the cultivated peanut,A. hypogaea L. Until recently, only one accession of this species was available in U.S.A. germplasm collections for analyses and species variability had not been documented. The objective of this study was to determine the intraspecific variability ofA. batizocoi to better understand phylogenetic relationships in sect.Arachis. Five accessions of the species were used for morphological and cytological studies and then F1 intraspecific hybrids analyzed. Some variation was observed among accessions—for example, differences in seed size, plant height and branch length. The somatic chromosomes of accessions 9484, 30079, and 30082 were nearly identical, whereas, the karyotypes of accessions 30081 and 30097 have several distinct differences. For example, 30081 had significantly more asymmetrical chromosomes 2 and 6 and more median chromosomes 7 and 10, and 30097 had significantly more asymmetrical chromosomes 3 and 10 and more median chromosomes 1 and 5 than accessions 9484, 30079, and 30082. All F1 hybrids among accessions were highly fertile. Meiotic observations indicated that hybrids among accessions 9484, 30079, or 30082 had mostly bivalents. However, quadrivalents were observed when either 30081 or 30097 was crossed with the above three accessions and 30081 × 30097 had quadrivalents, hexavalents and octavalents. The presence of translocations is the most likely cause of multivalent formation inA. batizocoi hybrids. Cytological evolution via translocations has apparently been an important mechanism for differentiation in the species.Paper No. 12382 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643.  相似文献   

18.
Restriction fragment length polymorphisms (RFLPs) were studied in fourteen accessions of CCDD genome allotetraploid wild rice species (Oryza latifolia, O. alta and O. grandiglumis). Fourteen nuclear RFLP markers previously mapped in AA genome-cultivated rice were used as probes. A phylogenetic tree, constructed by parsimony analysis based on RFLPs, grouped the accessions according to their geographic origin from Central or South America. Oryza alta, O. grandiglumis and one accession of O. latifolia grouped together as a subgroup, and our results suggested that the three taxa should be considered as populations of a single complex species. Duplicate loci, representing the two constituent genomes of the allotetraploid, were observed for most RFLP markers. By comparing RFLPs from the allotetraploids with those from a CC genome diploid wild species (O. officinalis), it was possible to detect RFLPs specific for both the CC and DD genomes of the allotetraploid. In inter-accession F2 populations, independent segregation of RFLP markers for CC and DD genomes was observed.  相似文献   

19.
Restriction fragment length polymorphism diversity in soybean   总被引:7,自引:0,他引:7  
Summary Fifty-eight soybean accessions from the genus Glycine, subgenus Soja, were surveyed with 17 restriction fragment length polymorphism (RFLP) genetic markers to assess the level of molecular diversity and to evaluate the usefulness of previously identified RFLP markers. In general, only low levels of molecular diversity were observed: 2 of the 17 markers exhibited three alleles per locus, whereas all others had only two alleles. Thirty-five percent of the markers had rare alleles present in only 1 or 2 of the 58 accessions. Molecular diversity was least among cultivated soybeans and greatest between accessions of different soybean species such as Glycine max (L.) Merr. and G. soja Sieb. and Zucc. Principal component analysis was useful in reducing the multidimensional genotype data set and identifying genetic relationships.  相似文献   

20.
Solanum sect. Petota (tuber-bearing wild and cultivated potatoes) are a group of approximately 190 wild species distributed throughout the Americas from the southwestern United States south to Argentina, Chile, and Uruguay. Solanum series Conicibaccata are a group of approximately 40 species within sect. Petota, distributed from central Mexico to central Bolivia, composed of diploids (2n = 2x = 24), tetraploids (2n = 4x = 48) and hexaploids (2n = 6x = 64); the polyploids are thought to be polysomic polyploids. This study initially was designed to address species boundaries of the four Mexican and Central American species of series Conicibaccata with AFLP data with the addition of first germplasm collections of one of these four species, Solanum woodsonii, as a follow-up to prior morphological, chloroplast DNA, and RAPD studies; and additional species of series Conicibaccata from South America. AFLP data from 12 primer combinations (1722 polymorphic bands) are unable to distinguish polyploid species long thought to be distinct. The data suggest a complex reticulate history of the tetraploids or the need for a broad downward reevaluation of the number of species in series Conicibaccata, a trend seen in other series of sect. Petota. Separately, through flow cytometry, we report the first ploidy level of S. woodsonii, as tetraploid (2n = 48). The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号