首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-cyclodextrin (βCD) and methyl-β-cyclodextrin (MβCD) complexes with sulfamethazine (SMT) were prepared and characterized by different experimental techniques, and the effects of βCD and MβCD on drug solubility were assessed via phase-solubility analysis. The phase-solubility diagram for the drug showed an increase in water solubility, with the following affinity constants calculated: 40.4 ± 0.4 (pH 2.0) and 29.4 ± 0.4 (pH 8.0) M−1 with βCD and 56 ± 1 (water), 39 ± 3 (pH 2.0) and 39 ± 5 (pH 8.0) M−1 with MβCD. According to 1H NMR and 2D NMR spectroscopy, the complexation mode involved the aromatic ring of SMT included in the MβCD cavity. The complexes obtained in solid state by freeze drying were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermal analysis. The amorphous complexes obtained in this study may be useful in the preparation of pharmaceutical dosage forms of SMT.  相似文献   

2.
The controlled release of diflunisal and fluconazole from tablets made of novel polymers, poly(acrylic acid) (PAA) crosslinked with either β-cyclodextrin (βCD) or hydroxypropyl-βCD (HPβCD), was investigated and Carbopol 934P (Carbopol) was used as a highly crosslinked PAA for comparison. Diflunisal strongly associates with βCD-PAA and HPβCD-PAA polymers (Ka of 486 and 6,055 M−1 respectively); thus, it was physically mixed into the conjugates and also precomplexed to identify whether decomplexation has any influence on release kinetics. Fluconazole has poor complexing ability (Ka of 34 M−1 with HPβCD-PAA); thus, it was only tested as a physical mixture. Swelling and adhesion studies were conducted on all tablet combinations and adhesivity of the CD-PAA polymer tablets was maintained. Diflunisal release was much slower from HPβCD-PAA tablets than from βCD-PAA, suggesting that a higher degree of complexation retards release. The precomplexed diflunisal release was also slower than the physically mixed diflunisal of the corresponding conjugate. The release closely followed zero-order kinetics for HPβCD-PAA, but was more sigmoidal for βCD-PAA and especially Carbopol. Conversely, poorly associating fluconazole released in almost exactly the same way across both polymers and Carbopol, indicating that the release kinetics of poorly associating drugs are not influenced by the presence of cyclodextrins. In view of the varying profiles and release rates shown with diflunisal for the different polymers, the fluconazole data support the concept that adequate complexation can indeed modulate the release kinetics of drugs.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-012-9903-3) contains supplementary material, which is available to authorized users.Key words: controlled release, cyclodextrin, diflunisal, fluconazole, poly(acrylic acid)  相似文献   

3.
Fungal keratitis is a serious corneal disease that may result in loss of vision. There are limited treatment options available in Iraqi eye hospitals which might be the main reason behind the poor prognosis of many cases. The purpose of this study was to prepare and pharmaceutically evaluate clotrimazole–β-cyclodextrin (CTZ–β-CD) eyedrops then clinically assess its therapeutic efficacy on fungal keratitis compared with extemporaneous amphotericin B eyedrops (0.5% w/v). A CTZ–β-CD ophthalmic solution was prepared and evaluated by various physicochemical, microbiological, and biological tests. The prepared formula was stable in 0.05 M phosphate buffer pH 7.0 at 40 ± 2°C and 75 ± 5% RH for a period of 6 months. Light has no significant effect on the formula’s stability. The CTZ–β-CD eyedrops efficiently complied with the isotonicity, sterility, and antimicrobiological preservative effectiveness tests. Results of the clinical study revealed that 20 (80%) patients showed a favorable response to the CTZ–β-CD eyedrops, while 16 patients (64%) exhibited a favorable response to amphotericin B (P > 0.05). The mean course of treatment was significantly (P < 0.05) less in the CTZ treatment group than in the amphotericin group (21.5 ± 5.2 vs. 28.3 ± 6.4 days, respectively). The CTZ formulation was significantly (P < 0.05) more effective in the management of severe cases and also against Candida sp. than amphotericin B. There was no significant difference (P < 0.05) between both therapies against filamentous fungi. The CTZ–β-CD formulation can be used alternatively to other ophthalmic antimycotic treatment options in developing countries where stability, cost, or efficacy is a limiting factor.Key words: clotrimazole, β-cyclodextrin, eyedrops, fungal keratitis, Iraq  相似文献   

4.
The aim of this study was to prepare and characterise inclusion complexes of a low water-soluble drug, mefenamic acid (MA), with β-cyclodextrin (β-CD). First, the phase solubility diagram of MA in β-CD was drawn from 0 to 21 × 10−3 M of β-CD concentration. A job’s plot experiment was used to determine the stoichiometry of the MA:β-CD complex (2:1). The stability of this complex was confirmed by molecular modelling simulation. Three methods, namely solvent co-evaporation (CE), kneading (KN), and physical mixture (PM), were used to prepare the (2:1) MA:β-CD complexes. All complexes were fully characterised. The drug dissolution tests were established in simulated liquid gastric and the MA water solubility at pH 1.2 from complexes was significantly improved. The mechanism of MA released from the β-CD complexes was illustrated through a mathematical treatment. Finally, two in vitro experiments confirmed the interest to use a (2:1) MA:β-CD complex.  相似文献   

5.
We previously developed a unique four-fluid nozzle spray drier that can produce water-soluble microspheres containing water-insoluble drug nanoparticles in one step without any common solvent between the water-insoluble drug and water-soluble carrier. In the present study, we focused on maltosyl-β-cyclodextrin (malt-β-CD) as a new water-soluble carrier and it was investigated whether drug/malt-β-CD microspheres could improve the bioavailability compared with our previously reported drug/mannitol (MAN) microspheres. The physicochemical properties of bare drug microparticles (ONO-2921, a model water-insoluble drug), drug/MAN microspheres, and drug/malt-β-CD microspheres were evaluated. In vitro aerosol performance, in vitro dissolution rate, and the blood concentration profiles after intratracheal administration were compared between these formulations. The mean diameter of both drug/MAN and drug/malt-β-CD microspheres was approximately 3–5 μm and both exhibited high aerosol performance (>20% in stages 2–7), but drug/malt-β-CD microspheres had superior release properties. Drug/malt-β-CD microspheres dissolved in an aqueous phase within 2 min, while drug/MAN microspheres failed to dissolve in 30 min. Inhalation of drug/malt-β-CD microspheres enhanced the area under the curve of the blood concentration curve by 15.9-fold than that of bare drug microparticles and by 6.1-fold than that of drug/MAN microspheres. Absolute bioavailability (pulmonary/intravenous route) of drug/malt-β-CD microspheres was also much higher (42%) than that of drug/MAN microspheres (6.9%). These results indicate that drug/malt-β-CD microspheres prepared by our four-fluid nozzle spray drier can improve drug solubility and pulmonary delivery.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-012-9826-z) contains supplementary material, which is available to authorized users.KEY WORDS: 4-fluid nozzle spray drier, inhalation therapy, maltosyl-β-cyclodextrin, microparticles, water-insoluble drug  相似文献   

6.
The aim of the present study was to increase the solubility of an anti-allergic drug loratadine by making its inclusion complex with β-cyclodextrin and to develop it’s thermally triggered mucoadhesive in situ nasal gel so as to overcome first-pass effect and consequently enhance its bioavailability. A total of eight formulations were prepared by cold method and optimized by 23 full factorial design. Independent variables (concentration of poloxamer 407, concentration of carbopol 934 P, and pure drug or its inclusion complex) were optimized in order to achieve desired gelling temperature with sufficient mucoadhesive strength and maximum permeation across experimental nasal membrane. The design was validated by extra design checkpoint formulation (F9) and Pareto charts were used to help eliminate terms that did not have a statistically significant effect. The response surface plots and possible interactions between independent variables were analyzed using Design Expert Software 8.0.2 (Stat Ease, Inc., USA). Faster drug permeation with zero-order kinetics and target flux was achieved with formulation containing drug: β-cyclodextrin complex rather than those made with free drug. The optimized formulation (F8) with a gelling temperature of 28.6 ± 0.47°C and highest mucoadhesive strength of 7,676.0 ± 0.97 dyn/cm2 displayed 97.74 ± 0.87% cumulative drug permeation at 6 h. It was stable for over 3 months and histological examination revealed no remarkable damage to the nasal tissue.  相似文献   

7.
Song W  Cun D  Xi H  Fang L 《AAPS PharmSciTech》2012,13(3):811-815
A moderate drug permeating rate (flux) is desirable for long-acting transdermal patches. In this work, a novel simple method of controlling bisoprolol (BSP) flux by ion-pair strategy was initiated. Different ion-pair complexes including bisoprolol maleate (BSP-M), bisoprolol tartarate, bisoprolol besilate, and bisoprolol fumarate were prepared and their fluxes through rabbit abdominal skin were determined separately in vitro. Furthermore, permeation behavior from isopropyl myristate, solubility index in pressure-sensitive adhesives, determined by DSC, and n-octanol/water partition coefficient (log P) were investigated to illustrate the mechanism of drug permeation rate controlling. The results showed that compared to free BSP (J = 25.98 ± 2.34 μg/cm2/h), all BSP ion-pair complexes displayed lower and controllable flux in the range of 0.11 to 4.19 μg/cm2/h. After forming ion-pair complexes, the capability of BSP to penetrate through skin was weakened due to the lowered log P and increased molecule weight. Accordingly, this study has demonstrated that the flux of BSP could be controlled by ion-pair strategy, and among all complexes investigated, BSP-M was the most promising candidate for long-acting transdermal patches.Key words: bisoprolol, flux, ion-pair, transdermal  相似文献   

8.
Salt formation has been a promising approach for improving the solubility of poorly soluble acidic and basic drugs. The aim of the present study was to prepare the salt form of itraconazole (ITZ), a hydrophobic drug to improve the solubility and hence dissolution performance. Itraconazolium ditolenesulfonate salt (ITZDITOS) was synthesized from ITZ using acid addition reaction with p-toluenesulfonic acid. Salt characterization was performed using 1H NMR, mass spectrometry, Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The particle size and morphology was studied using dynamic light scattering technique and scanning electron microscopy, respectively. The solubility of the salt in water and various pharmaceutical solvents was found multifold than ITZ. The dissolution study exhibited 5.5-fold greater percentage release value in 3 h of ITZDITOS (44.53%) as compared with ITZ (8.54%). Results of in vitro antifungal studies using broth microdilution technique indicate that ITZDITOS possessed similar antifungal profile as that of ITZ when tested against four fungal pathogens. Furthermore, the physical mixtures of ITZDITOS with two cyclodextrins, β-cyclodextrin (β-CD), and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) were prepared in different molar ratios and were evaluated for in vitro release. It was observed that in only 30 min of dissolution study, about 74 and 81% of drug was released from 1:3 molar ratios of ITZDITOS with β-CD and ITZDITOS with HP-β-CD, respectively, which was distinctly higher than the drug released from ITZ commercial capsules (70%). The findings warrant further preclinical and clinical studies on ITZDITOS so that it can be established as an alternative to ITZ for developing oral formulations.KEY WORDS: antifungal, BCS class II, dissolution rate, insoluble, itraconazole  相似文献   

9.
The aim of this study was to investigate the capability of two surfactants, Cremophor RH 40 (RH) and Cremophor EL (EL), to prepare liquid crystalline nanoparticles (LCN) and to study its influence on the topical delivery of finasteride (FNS). FNS-loaded LCN was formulated with the two surfactants and characterized for size distribution, morphology, entrapment efficiency, in vitro drug release, and skin permeation/retention. Influence of FNS-loaded LCN on the conformational changes on porcine skin was also studied using attenuated total reflectance Fourier-transform infrared spectroscopy. Transmission electron microscopical image confirmed the formation of LCN. The average particle size of formulations was in the range of 165.1–208.6 and 153.7–243.0 nm, respectively. The formulations prepared with higher surfactant concentrations showed faster release and significantly increased skin permeation. Specifically, LCN prepared with RH 2.5% presented higher permeation flux (0.100 ± 0.005 μgcm−2h−1) compared with lower concentration (0.029 ± 0.007 μgcm−2h−1). Typical spectral bands of lipid matrix of porcine skin were shifted to higher wavenumber, indicating increased degree of disorder of the lipid acyl chains which might cause fluidity increase of stratum corneum. Taken together, Cremophor surfactants exhibited a promising potential to stabilize the LCN and significantly augmented the skin permeation of FNS.KEY WORDS: Cremophor, finasteride, liquid crystalline nanoparticles, skin permeation–retention  相似文献   

10.
Curcuma comosa has long been used as a gynecological medicine. Several diarylheptanoids have been purified from this plant, and their pharmacological effects were proven. However, there is no information about the absorption of C. comosa components to support the formulation usage. In the present study, C. comosa hexane extract and the mixture of its two major compounds, (4E,6E)-1,7-diphenylhepta-4,6-dien-3-ol (DA1) and (6E)-1,7-diphenylhept-6-en-3-ol (DA2), were formulated into nanoemulsions. The physical properties of the nanoemulsions and the in situ intestinal absorptions of DA1 and DA2 were evaluated. The results demonstrated the mean particle sizes at 0.207 ± 0.001 and 0.408 ± 0.014 μm, and the zeta potential at −14.57 ± 0.85 and −10.47 ± 0.32 mV for C. comosa nanoemulsion (C.c-Nano) and mixture of diarlylheptanoid nanoemulsions (DA-Nano), respectively. The entrapments of DA1 and DA2 were 76.61% and 75.41%, and 71.91% and 71.63% for C.c-Nano and DA-Nano, respectively. The drug loading ratios of DA1 and DA2 were 351.47 and 614.53 μg/mg, and 59.48 and 126.72 μg/mg for C.c-Nano and DA-Nano. The intestinal absorption rates of DA1 and DA2 were 0.329 ± 0.015 and 0.519 ± 0.026 μg/min/cm2 in C.c-Nano, and 0.380 ± 0.006 and 0.428 ± 0.036 μg/min/cm2 in DA-Nano, which were five to ten times faster than those in oil. In conclusion, the formulation in nanoemulsion forms obviously increased the intestinal absorption rate of diarylheptanoids.KEY WORDS: Curcuma comosa, diarylheptanoids, intestinal absorption, nanoemulsion, phytoestrogen  相似文献   

11.
Several attempts have been made to mask the bitter taste of oral formulations, but none have been made for injectable formulations. This study aims to mask the bitter taste of dental lidocaine HCl (LID) injection using hydroxypropyl-β-cyclodextrin (HP-β-CD) and sodium saccharin. Inclusion complexes of LID and HP-β-CD were prepared by the solution method in 1:1 and 1:2 M ratios. Inclusion complexes in solution were studied using phase solubility in phosphate buffer solutions (pH 8, 9, and 10). Freeze-dried inclusion complexes were characterized using differential scanning calorimetry (DSC), X-ray, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and in vitro release. Injectable formulations were prepared using inclusion complexes and characterized for stability and for taste using an Alpha MOS ASTREE electronic tongue (ETongue). The association constants of HP-β-CD with lidocaine-free base and its ionized form were found to be 26.23 ± 0.00025 and 0.8694 ± 0.00045 M−1, respectively. Characterization studies confirmed the formation of stable inclusion complexes of LID and HP-β-CD. Injectable formulations were found to be stable for up to 6 months at 4°C, 25°C, and 40°C. The taste evaluation study indicated that HP-β-CD (1:1 and 1:2 M ratios) significantly improved the bitter taste of LID injectable formulation. In conclusion, inclusion complex in the 1:1 M ratio with 0.09% sodium saccharin was considered to be optimum in masking the bitter taste of LID.KEY WORDS: bitter taste, HP-β-CD, inclusion complex, injectable, lidocaine HCl, taste masking  相似文献   

12.
Berberine hydrochloride (BH) is an isoquinolin alkaloid with promising anticancer efficacies. Nevertheless, further development and application of this compound had been hampered by its poor aqueous solubility, low gastrointestinal absorption, and rapid metabolism in the body. In this study, a solid lipid nanoparticle (SLN)-based system was developed for efficient incorporation and persistent release of BH. The drug-loading SLNs (BH-loaded SLNs) were stable, with a mean particle size of 81.42 ± 8.48 nm and zeta potential of −28.67 ± 0.71 mV. BH-loaded SLNs showed desirable drug entrapment efficiency and drug-loaded, and the release of BH from SLNs was significantly slower than free BH. Importantly, our in vitro study indicated that BH-loaded SLNs more significantly inhibited cell proliferation on MCF-7, HepG 2, and A549 cancer cells. Meanwhile, clone formation, cellular uptake, cell cycle arrest, and cell apoptosis studies also demonstrated that BH-loaded SLNs enhanced the antitumor efficacies of BH on MCF-7 cancer cells. Taken together, our results suggest that this SLN formulation may serve as a novel, simple, and efficient system for the delivery of BH.KEY WORDS: antitumor evaluation, apoptosis, berberine hydrochloride, solid lipid nanoparticles  相似文献   

13.
Lornoxicam is a potent oxicam class of non steroidal anti-inflammatory agent, prescribed for mild to moderate pain and inflammation. Niosomal gel of lornoxicam was developed for topical application. Lornoxicam niosomes (Lor-Nio) were fabricated by thin film hydration technique. Bilayer composition of niosomal vesicles was optimized. Lor-Nio dispersion was characterized by DSC, XRD, and FT-IR. Morphological evaluation was performed by scanning electron microscopy (SEM). Lor-Nio dispersion was incorporated into a gel using 2% w/w Carbopol 980 NF. Rheological and texture properties of Lor-Nio gel formulation showed suitability of the gel for topical application. The developed formulation was evaluated for in vitro skin permeation and skin deposition studies, occlusivity test and skin irritation studies. Pharmacodynamic activity of the Lor-Nio gel was performed by carragenan-induced rat paw model. Optimized Lor-Nio comprised of Span 60 and cholesterol in a molar ratio of 3:1 with 30 μM dicetyl palmitate as a stabilizer. It had particle size of 1.125 ± 0.212 μm (d90), with entrapment efficiency of 52.38 ± 2.1%. DSC, XRD, and IR studies showed inclusion of Lor into niosomal vesicles. SEM studies showed spherical closed vesicular structure with particles in nanometer range. The in vitro skin permeation studies showed significant improvement in skin permeation and skin deposition for Lor-Nio gel (31.41 ± 2.24 μg/cm2, 30.079 ± 1.2 μg/cm2) over plain lornoxicam gel (7.37 ± 1.27 μg/cm2, 6.6 ± 2.52 μg/cm2). The Lor-Nio gel formulation showed enhanced anti-inflammatory activity by exhibiting mean edema inhibition (87.69 ± 1.43%) which was significantly more than the plain lornoxicam gel (53.84 ± 2.21%).KEY WORDS: anti-inflammatory activity, lornoxicam, niosomes, rheology, texture analysis  相似文献   

14.
Cisplatin, first (platinum) compound to be evolved as an anticancer agent, has found its important place in cancer chemotherapy. However, the dose-dependent toxicities of cisplatin, namely nephrotoxicity, ototoxicity, peripheral neuropathy, and gastrointestinal toxicity hinder its widespread use. Liposomes can reduce the toxicity of cisplatin and provide a better therapeutic action, but the low lipid solubility of cisplatin hinders its high entrapment in such lipid carrier. In the present investigation, positively charged reactive aquated species of cisplatin were complexed with negatively charged caprylate ligands, resulting in enhanced interaction of cisplatin with lipid bilayer of liposomes and increase in its encapsulation in liposomal carrier. Prepared cisplatin liposomes were found to have a vesicular size of 107.9 ± 6.2 nm and zeta potential of −3.99 ± 3.45 mV. The optimized liposomal formulation had an encapsulation efficiency of 96.03 ± 1.24% with unprecedented drug loading (0.21 mg cisplatin / mg of lipids). The in vitro release studies exhibited a pH-dependent release of cisplatin from liposomes with highest release (67.55 ± 3.65%) at pH 5.5 indicating that a maximum release would occur inside cancer cells at endolysosomal pH. The prepared liposomes were found to be stable in the serum and showed a low hemolytic potential. In vitro cytotoxicity of cisplatin liposomes on A549 lung cancer cell line was comparable to that of cisplatin solution. The developed formulation also had a significantly higher median lethal dose (LD50) of 23.79 mg/kg than that of the cisplatin solution (12 mg/kg). A promising liposomal formulation of cisplatin has been proposed that can overcome the disadvantages associated with conventional cisplatin therapy and provide a higher safety profile.Key Words: cisplatin, complexation, cytotoxicity, LD50, liposome  相似文献   

15.
Controlled-release (CR) matrix tablet of 4 mg risperidone was developed using flow bound dry granulation–slugging method to improve its safety profile and compliance. Model formulations F1, F2, and F3, consisting of distinct blends of Methocel® K100 LV-CR and Ethocel® standard 7FP premium, were slugged. Each batch of granules (250–1,000 μm), obtained by crushing the slugs, was divided into three portions after lubrication and then compressed to 9-, 12-, and 15-kg hard tablets. In vitro drug release studies were carried out in 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using a paddle dissolution apparatus run at 50 rpm. The CR test tablet, containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness, exhibited pH-independent zero-order release kinetics for 24 h. The drug release rate was inversely proportional to the content of Ethocel®, while the gel layer formed of Methocel® helped in maintaining the integrity of the matrix. Changes in the hardness of tablet did not affect the release kinetics. The tablets were reproducible and stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. Risperidone and its active metabolite, 9-hydroxyrisperidone, present in the pooled rabbit’s serum, were analyzed with HPLC-UV at λmax 280 nm. The CR test tablet exhibited bioequivalence to reference conventional tablet in addition to the significantly (p < 0.05) optimized peak concentration, Cmax, and extended peak time, Tmax, of the active moiety. There was a good association between drug absorption in vivo and drug release in vitro (R2 = 0.7293). The successfully developed CR test tablet may be used for better therapeutic outcomes of risperidone.KEY WORDS: controlled release, dry granulation slugging method, risperidone  相似文献   

16.
The present study aimed at development of capsular dosage form of surface-adsorbed nanoemulsion (NE) of olmesartan medoxomil (OLM) so as to overcome the limitations associated with handling of liquid NEs without affecting their pharmaceutical efficacy. Selection of oil, surfactant, and cosurfactant for construction of pseudoternary phase diagrams was made on the basis of solubility of drug in these excipients. Rationally selected NE formulations were evaluated for percentage transmittance, viscosity, refractive index, globule size, zeta potential, and polydispersity index (PDI). Formulation (F3) comprising of Capmul MCM® (10% v/v), Tween 80® (11.25% v/v), polyethylene glycol 400 (3.75% v/v), and double-distilled water (75% v/v) displayed highest percentage cumulative drug release (%CDR; 96.69 ± 1.841), least globule size (17.51 ± 5.87 nm), low PDI (0.203 ± 0.032), high zeta potential (−58.93 ± 0.98 mV), and hence was selected as the optimized formulation. F3 was adsorbed over colloidal silicon dioxide (2 ml/400 mg) to produce free-flowing solid surface-adsorbed NE that presented a ready-to-fill capsule composition. Conversion of NE to surface-adsorbed NE and its reconstitution to NE did not affect the in vitro release profile of OLM as the similarity factor with respect to NE was found to be 66% and 73% respectively. The %CDR after 12 h for optimized NE, surface-adsorbed NE, and reconstituted NE was found to be 96.69 ± 0.54, 96.07 ± 1.76, and 94.78 ± 1.57, respectively (p > 0.05). The present study established capsulated surface-adsorbed NE as a viable delivery system with the potential to overcome the handling limitations of NE.KEY WORDS: bioavailability, nanoemulsion, olmesartan medoxomil, oral  相似文献   

17.
In this study, lansoprazole (LSP)/cyclodextrin (CD) inclusion complexes were prepared using a fluid bed coating technique, with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HPCD) as the host molecules, respectively, to simultaneously improve the dissolution and stability of LSP. The dissolution rate and stability of LSP was dramatically enhanced by inclusion complexation regardless of CD type. LSP/HPCD inclusion complex was more stable under illumination than LSP/β-CD inclusion complex. Differential scanning calorimetry and powder X-ray diffractometry proved the absence of crystallinity in both LSP/CD inclusion complexes. Fourier transform infrared spectroscopy together with molecular modeling indicated that the benzimidazole of LSP was included in the cavity of both CDs, while LSP was more deeply included in HPCD than β-CD. The enhanced photostability was due to the inclusion of the sulfinyl moiety into the HPCD cavity. CD inclusion complexation could improve the dissolution and stability of LSP.KEY WORDS: cyclodextrin, dissolution, inclusion complex, lansoprazole, molecular modeling, stability  相似文献   

18.
Silymarin is a standardized extract from Silybum marianum seeds, known for its many skin benefits such as antioxidant, anti-inflammatory, and immunomodulatory properties. In this study, the potential of several microemulsion formulations for dermal delivery of silymarin was evaluated. The pseudo-ternary phase diagrams were constructed for the various microemulsion formulations which were prepared using glyceryl monooleate, oleic acid, ethyl oleate, or isopropyl myristate as the oily phase; a mixture of Tween 20®, Labrasol®, or Span 20® with HCO-40® (1:1 ratio) as surfactants; and Transcutol® as a cosurfactant. Oil-in-water microemulsions were selected to incorporate 2% w/w silymarin. After six heating–cooling cycles, physical appearances of all microemulsions were unchanged and no drug precipitation occurred. Chemical stability studies showed that microemulsion containing Labrasol® and isopropyl myristate stored at 40°C for 6 months showed the highest silybin remaining among others. The silybin remainings depended on the type of surfactant and were sequenced in the order of: Labrasol® > Tween 20® > Span 20®. In vitro release studies showed prolonged release for microemulsions when compared to silymarin solution. All release profiles showed the best fits with Higuchi kinetics. Non-occlusive in vitro skin permeation studies showed absence of transdermal delivery of silybin. The percentages of silybin in skin extracts were not significantly different among the different formulations (p > 0.05). Nevertheless, some silybin was detected in the receiver fluid when performing occlusive experiments. Microemulsions containing Labrasol® also were found to enhance silymarin solubility. Other drug delivery systems with occlusive effect could be further developed for dermal delivery of silymarin.Key words: dermal delivery, microemulsion, silybin, silymarin  相似文献   

19.
Solubilisation of six polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, anthracene, fluoranthene, fluorene, phenanthrene and pyrene) by three synthetic cyclodextrins (CDs) (2-hydroxypropyl-β-CD, hydroxypropyl-γ-CD and ramdomly methylated-β-CD) was investigated in order to select the CD which presents the greatest increase in solubility and better complexation parameters for its use in contaminated scenarios. The presence of the three cyclodextrins greatly enhanced the apparent water solubility of all the PAHs through the formation of inclusion complexes of 1∶1 stoichiometry. Anthracene, fluoranthene, fluorene and phenanthrene clearly presented a higher solubility when β-CD derivatives were used, and especially the complexes with the ramdomly methylated-β-CD were favoured. On the contrary, pyrene presented its best solubility results when using 2-hydroxypropyl-γ-CD, but for acenaphthene the use of any of the three CDs gave the same results. Complementary to experimental phase-solubility studies, a more in-depth estimation of the inclusion process for the different complexes was carried out using molecular modelling in order to find a correlation between the degree of solubilisation and the fit of PAH molecules within the cavity of the different CDs and to know the predominant driving forces of the complexation.  相似文献   

20.
This study aimed to identify the response of a salivary stress protein, extracellular heat shock protein (eHSP70), to intense exercise and to investigate the relationship between salivary eHSP70 and salivary immunoglobulin A (SIgA) levels in response to exercise. Sixteen healthy sedentary young males (means ± SD 23.8 ± 1.5 years, 172.2 ± 6.4 cm, 68.3 ± 7.4 kg) performed 59 min of cycling exercise at 75 % VO2max. Saliva and whole blood samples were collected before (Pre), immediately after (Post), and at 1, 2, 3, and 4 h after completion of the exercise (1, 2, 3, and 4 h). The salivary eHSP70 and SIgA levels were measured by enzyme-linked imunosorbent assay (ELISA), and the secretion rates were computed by multiplying the concentration by the saliva flow rate. White blood cells were analyzed using an automated cell counter with a direct-current detection system. The salivary eHSP70 secretion rates were 1.11 ± 0.86, 1.51 ± 1.47, 1.57 ± 1.32, 2.21 ± 2.04, 3.36 ± 2.72, and 6.89 ± 4.02 ng · min−1 at Pre, Post, and 1, 2, 3, and 4 h, respectively. The salivary eHSP70 secretion rate was significantly higher at 4 h than that at Pre, Post, 1, and 3 h (p < 0.05). The SIgA secretion rates were 26.9 ± 12.6, 20.3 ± 10.4, 19.6 ± 11.0, 21.8 ± 12.8, 21.5 ± 11.9, and 21.9 ± 11.7 μg · min−1 at Pre, Post, 1, 2, 3, and 4 h, respectively. The salivary SIgA secretion rate was significantly lower between 1 and 4 h than that at Pre (p < 0.05). There was a positive correlation between salivary eHSP70 and SIgA in both concentration and secretion rates before exercise (p < 0.05). The absolute number of white blood cells significantly increased after exercise, with a maximum at 2 h (p < 0.05). The neutrophil/lymphocyte ratio was significantly increased from 1 to 4 h when compared with that in the Pre samples (p < 0.05). The present study revealed that salivary eHSP70 significantly increased at 4 h after the 59 min of intense exercise in sedentary male subjects. Exercise stress can induce elevated salivary eHSP70 level and upregulate oral immune function partially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号