首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The polyelectrolyte complex (PEC) hydrogel beads based on chitosan (CS) and carrageenan (CR) have been studied as a controlled release device to deliver sodium diclofenac (DFNa) in the simulated gastrointestinal condition. Various factors potentially influencing the drug release (ie, CS/CR proportion, DFNa content, types and amount of cross-linking agents) were also investigated. The optimal formulation was obtained with CS/CR proportion of 2/1 and 5% (wt/vol) DFNa. The controlled release of the drug from this formulation was superior to other formulations and was able to maintain the release for approximately 8 hours. Upon cross-linking with glutaric acid and glutaraldehyde, the resulting beads were found to be more efficient for prolonged drug release than their non-cross-linking counterparts. The bead cross-linked with glutaraldehyde was able to control the release of the drug over 24 hours. The difference in the drug release behavior can be attributed to the differences in ionic interaction between the oppositely charged ions and to the concentrations of the drug within the beads, which depends on the compositions of the formulation and the pH of the dissolution medium. The release of drug was controlled by the mechanism of the dissolution of DFNa in the dissolution medium and the diffusion of DFNa through the hydrogel beads.  相似文献   

2.
Drug-loaded calcium pectinate gel (CaPG) beads were prepared by either mixing, absorption, or swelling method. The effects of drug loading method as well as the drug loading factors (i.e., drug concentration, soaking time in drug solution, type of solvent) on drug content and drug release were investigated. The amount of drug uptake (i.e., drug content) into CaPG beads increased as the initial drug concentration increased and varied depending on the loading method. The in vitro release studies in 0.1 N hydrochloric acid (HCl) and pH 6.8 buffer indicated that the drug loading method affected drug release and release parameter, time for 50% of drug release (T 50). The mixing method provided a faster drug release and lower T 50 than the absorption method and swelling method, respectively. This is probably due to higher drug content in CaPG beads. The increased concentration of drug in soaking solution and soaking time resulted in higher drug content and thus faster drug release (lower in T 50 values). When using 0.1 N HCl as solvent for soaking instead of water, the drug release was slower owing to the increase in molecular tortuosity of CaPG beads. The drug release was also affected by pH of the release medium in which drug release in 0.1 N HCl was faster than in pH 6.8 buffer.  相似文献   

3.
The present study was aimed at formulating tablets comprising of coating susceptible to microbial enzyme degradation for releasing budesonide in the colon. Tablets prepared by using Avicel® pH 102 as diluent and Eudragit® L100-55 as binder were coated to a weight gain of 10% w/w employing aqueous mixtures containing chitosan (CH) and chondroitin sulfate (CS). The interpolymer complex between CH and CS was characterized using Fourier transform infrared (FTIR) and differential scanning calorimetery (DSC) studies. The tablets were evaluated for release of budesonide through in vitro in vivo studies. Formation of bonds between –COO? and –OSO 3 ? groups of CS and –NH 3 + groups of CH was evident in the FTIR spectra of these interpolymer complexed (IPC) films. The DSC thermograms of these films revealed one endothermic transition between 190°C and 205°C, suggesting the formation of new bonds in the IPC. The pH sensitive swelling exhibited by these films was observed to be a function of CH concentration. Tablets coated with aqueous mixtures containing 40:60 or 50:50 ratio of CH/CS totally prevented the release of budesonide in pH 1.2 buffer. The peaks (FTIR) and endothermic transitions (DSC) characteristic of interpolymer complexation were observed to remain unaffected after sequential exposure of the films to pH 1.2 and pH 7.4 buffer IP. This proved the versatility of these IPC films for colon delivery. C max of 1,168.99 and 1,174.2 ng/mL, respectively, at 12 and 8 h post-oral dosing of tablets coated with 40:60 or 50:50 ratio of CH/CS was observed in rats. The aqueous CH/CS (40:60) coating could provide a facile method for delivering budesonide to the colon.  相似文献   

4.
This study investigated the use of a newly developed chitosan-Ca pectinate microbead formulation for the colon-targeted delivery of anti-A/B toxin immunoglobulin of egg yolk (IgY) to inhibit toxin binding to colon mucosa cells. The effect of the three components (pectinate, calcium chloride, and chitosan) used for the microbead production was examined with the aim of identifying the optimal levels to improve drug encapsulation efficiency, swelling ratio, and cumulative IgY release rate. The optimized IgY-loaded bead component was pectin 5% (w/v), CaCl2 3% (w/v), and chitosan 0.5% (w/v). Formulated beads were spherical with 1.2-mm diameter, and the drug loading was 45%. An in vitro release study revealed that chitosan-Ca pectinate microbeads inhibited IgY release in the upper gastrointestinal tract and significantly improved the site-specific release of IgY in the colon. An in vivo rat study demonstrated that 72.6% of biologically active IgY was released specifically in the colon. These results demonstrated that anti-A/B toxin IgY-loaded chitosan-Ca pectinate oral microbeads improved IgY release behavior in vivo, which could be used as an effective oral delivery platform for the biological treatment of Clostridium difficile infection (CDI).  相似文献   

5.
The complex design of multifunctional nanomedicine is beneficial to overcome the multiple biological barriers of drug delivery, but it also presents additional hurdles to clinical translation (e.g., scaling-up and quality control). To address this dilemma, we employed a simple imidazole-bearing polymer micelle for enhanced cellular uptake, facilitated endosomal escape, and on-demand release of a model drug, SN-38. The micelles were crosslinked by the reversible imidazole/Zn2+ coordination with a drug loading of ca. 4% (w/w) and a diameter less than 200 nm. Under mimicked tumor microenvironment (pH 6.8), the surface charge of micelles reversed from negative to positive, leading to enhanced micelles uptake by model 4T1 cells. Such effect was verified by fluorescent labelling of micelles. Compared to imidazole-free nanocarriers, the charge-reversal micelles delivered significantly more SN-38 to 4T1 cells. Due to the proton sponge effect, imidazole-bearing micelles could rapidly escape from endosomes compared to the control micelles, as evidenced by the kinetic analysis of micelle/endosome co-localization. The coordination crosslinking also enabled the acid-triggered drug release. This work provides a “three birds with one stone” approach to achieve the multifunctionality of nanocarriers without complicated particle design, and opens new avenues of advancing nanomedicine translation via simple tailored nanocarriers.  相似文献   

6.
Excessive volatile acidity in wines is a major problem and is still prevalent because available solutions are nevertheless unsatisfactory, namely, blending the filter-sterilized acidic wine with other wines of lower volatile acidity or using reverse osmosis. We have previously explored the use of an empirical biological deacidification procedure to lower the acetic acid content of wines. This winemaker’s enological practice, which consists in refermentation associated with acetic acid consumption by yeasts, is performed by mixing the acidic wine with freshly crushed grapes, musts, or marc from a finished wine fermentation. We have shown that the commercial strain Saccharomyces cerevisiae S26 is able to decrease the volatile acidity of acidic wines with a volatile acidity higher than 1.44 g?L?1 acetic acid, with no detrimental impact on wine aroma. In this study, we aimed to optimize the immobilization of S26 cells in alginate beads for the bioreduction of volatile acidity of acidic wines. We found that S26 cells immobilized in double-layer alginate–chitosan beads could reduce the volatile acidity of an acidic wine (1.1 g?L?1 acetic acid, 12.5 % (v/v) ethanol, pH 3.12) by 28 and 62 % within 72 and 168 h, respectively, associated with a slight decrease in ethanol concentration (0.7 %). Similar volatile acidity removal efficiencies were obtained in medium with high glucose concentration (20 % w/v), indicating that this process may also be useful in the deacidification of grape musts. We, therefore, show that immobilized S. cerevisiae S26 cells in double-layer beads are an efficient alternative to improve the quality of wines with excessive volatile acidity.  相似文献   

7.
The effect of chitosan as internal or external coating on the mesalamine (5-ASA) release from calcium alginate microparticles (CaAl) was studied, and a delayed release of 5-ASA system intended for colonic drug delivery was developed. The external chitosan coating was developed by immersion of wetted CaAl in chitosan solution and the internal coating by mixing 5-ASA with chitosan solution and drying before the preparation of CaAl. Both systems were coated with Acryl-EZE® using combined fluid bed coating and immersion procedure. The results showed that in phosphate medium (pH 7.5), chitosan as 5-ASA coating promotes a quick erosion process accelerating drug release, but chitosan as external coating (CaAlCS) does not increase the T 50 value compared with the microparticles without chitosan (CaAl). Chitosan as internal or external coating was not effective to avoid the quick 5-ASA release in acidic medium (pH 1.2). The presence of β-glucosidase enzymes increases significantly the 5-ASA release for CaAl, while no effect was observed with chitosan as internal or external coating. Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray data revealed that 5-ASA did not form a solid solution but was dispersed in the microparticles. The Acryl-EZE® coating of microparticles was effective because all the formulations showed a low release, less than 15%, of 5-ASA in acid medium at pH 1.2. Significant differences in the percentage of 5-ASA released between formulations were observed in phosphate buffer at pH 6.0. In phosphate buffer at pH 7.2, all the formulations released 100% of 5-ASA.  相似文献   

8.
There are many studies about the synthesis of chitosan microparticles; however, most of them have very low production rate, have wide size distribution, are difficult to reproduce, and use harsh crosslinking agents. Uniform microparticles are necessary to obtain repeatable drug release behavior. The main focus of this investigation was to study the effect of the process and formulation parameters during the preparation of chitosan microparticles in order to produce particles with narrow size distribution. The technique evaluated during this study was emulsion crosslinking technique. Chitosan is a biocompatible and biodegradable material but lacks good mechanical properties; for that reason, chitosan was ionically crosslinked with sodium tripolyphosphate (TPP) at three different ratios (32, 64, and 100%). The model drug used was acetylsalicylic acid (ASA). During the preparation of the microparticles, chitosan was first mixed with ASA and then dispersed in oil containing an emulsifier. The evaporation of the solvents hardened the hydrophilic droplets forming microparticles with spherical shape. The process and formulation parameters were varied, and the microparticles were characterized by their morphology, particle size, drug loading efficiency, and drug release behavior. The higher drug loading efficiency was achieved by using 32% mass ratio of TPP to chitosan. The average microparticle size was 18.7 μm. The optimum formulation conditions to prepare uniform spherical microparticles were determined and represented by a region in a triangular phase diagram. The drug release analyses were evaluated in phosphate buffer solution at pH 7.4 and were mainly completed at 24 h.  相似文献   

9.
The aim of the present research work was to develop release modulated beads of losartan potassium complexed with anion exchange resin, Duolite AP143 (cholestyramine). Chitosan was selected as a hydrophilic polymer for the formation of beads which could sustain the release of the drug up to 12 h, along with drug resin complex (DRC). Chitosan beads were prepared using an in-liquid curing method by ionotropic cross-linking or interpolymer linkage with sodium tripolyphosphate (TPP). The formulation of the beads was optimized for entrapment efficiency and drug release using 32 full factorial design. The independent variables selected were DRC/chitosan and percent of TPP. The optimization model was validated for its performance characteristics. Studies revealed that as the concentration of chitosan and TPP was increased, entrapment efficiency and the drug release were found to increase and decrease, respectively. The swelling capacity of chitosan–TPP beads decreased with increasing concentration of TPP. The effect of chitosan concentration and percentage of TPP solution used for cross-linking on entrapment efficiency and drug release rate was extensively investigated. Optimized beads were subjected to in vivo studies in Wistar albino rats to determine the mean arterial blood pressure and compared with marketed formulation. The pharmacodynamic study demonstrates steady blood pressure control for optimized formulation as compared to fluctuated blood pressure for the marketed formulation.  相似文献   

10.
The aim of this work was to develop a procedure for encapsulation of diltiazem HCl by spray coagulation. Factors affecting the formulations such as the effect of NaCl on the solubility of diltiazem in alginate solution, surface tension, pH, viscosity of the coagulation medium, and the effect of drug load on drug release were studied. The drug load was increased substantially from 10 up to 320 mg/mL by adding 1.2% w/v NaCl in 1% w/v alginate solution. More stable microcapsules were obtained at pH 4.6 (acetate buffer) than at a pH 2.8 (lactic acid), and the microencapsulation process was favored by the type of chitosan that produced low turbidity and viscosity in the coagulation medium. A dose of 50 mg/mL of diltiazem HCl, 1.2% w/v NaCl, and chitosan CS allowed higher amount of drug to be encapsulated. The high water solubility of diltiazem HCl leads to fast release from the microcapsules.  相似文献   

11.
Metronidazole (MZ) and levofloxacin (LF) are widely employed for treatment of periodontitis, but high oral dose and resistance development after long-term oral administration limit their use. The aim of this study was to alleviate shortcomings in the treatment of periodontitis by fabrication of intrapocket, biodegradable films of chitosan (CS) loaded with MZ and LF meant for inserting into periodontal pockets to treat infections. The films were developed by solvent casting technique using propylene glycol as plasticizer and glutaraldehyde as crosslinking agent. Their physical characteristics, such as drug content, surface pH, swelling index, and folding endurance, exhibited results within limit. Further, FTIR and DSC studies revealed stability of films and compatibility between drugs and excipients. SEM images of films showed the presence of free drug particles on the surface causing burst effect. In vitro release in McIlvaine buffer pH 6.6 was of sustained nature assisted by the burst effect. CS and crosslinking agent concentrations negatively affected drug release and positively affected T90 (time for releasing 90% of the drug) due to altered matrix density. In contrast, the plasticizer concentration increases membrane permeability and hence increased drug release, lowering T90. Crosslinked films demonstrated sustained release up to 7 days. The antibacterial efficacy of films was tested on Staphylococcus aureus and Escherichia coli, indicating good antibacterial activity. Clinical trials on patients proved the therapeutic efficacy of the films by a significant (p?<?0.05) decrease in the clinical markers of periodontitis, i.e. gingival index, plaque index and pocket depth. Conclusively, the films of MZ and LF were successful tools for the management of periodontitis.  相似文献   

12.
Lutein is widely used as diet supplement for prevention of age-related macular degeneration. However, the application and efficacy of lutein in food and nutritional products has been hampered due to its poor solubility and low oral bioavailability. This study aimed to develop and evaluate the formulation of oral fast-dissolving film (OFDF) containing lutein nanocrystals for enhanced bioavailability and compliance. Lutein nanocrystals were prepared by anti-solvent precipitation method and then encapsulated into the films by solvent casting method. The formulation of OFDF was optimized by Box-Behnken Design (BBD) as follows: HPMC 2.05% (w/v), PEG 400 1.03% (w/v), Cremophor EL 0.43% (w/v). The obtained films exhibited uniform thickness of 35.64 ± 1.64 μm and drug content of 0.230 ± 0.003 mg/cm2 and disintegrated rapidly in 29 ± 8 s. The nanocrystal-loaded films with reconstituted particle size of 377.9 nm showed better folding endurance and faster release rate in vitro than the conventional OFDFs with raw lutein. The microscope images, thermograms, and diffractograms indicated that lutein nanocrystals were highly dispersed into the films. After administrated to SD rats, t max was decreased from 3 h for oral solution formulation to less than 0.8 h for OFDF formulations, and C max increased from 150 ng/mL for solution to 350 ng/mL for conventional OFDF or 830 ng/mL for nanocrystal OFDF. The AUC 0-24h of conventional or nanocrystal OFDF was 1.37 or 2.08-fold higher than that of the oral solution, respectively. These results suggested that drug nanocrystal-loaded OFDF can be applied as a promising approach for enhanced bioavailability of poor soluble drugs like lutein.  相似文献   

13.
This study aimed to evaluate the ability of commercial soy protein isolate (SPI) to form cold-set gels under different pHs (5–11), pre-heating temperatures (60 °C, 80 °C), CaCl2 (0–15 mM) and SPI (5–15%, w/v) concentrations, and also select a formulation for the investigation of the effects of incorporating locust bean gum (LBG) (0–0.3%, w/v) and solid lipid microparticles (SLM) on gels rheological and microstructural properties. Gels were evaluated in terms of visual aspect, water-holding capacity, microstructure (using confocal laser scanning microscopy and cryo-scanning electronic microscopy) and rheological properties. SPI showed higher solubilities at pHs 7 (32.0%), 9 (51.6%) and 11 (100%). Self-supported gels were obtained under several conditions at alkaline pHs. At pH 7, only systems pre-heated to 80 °C with 15% (w/v) SPI and 10 or 15 mM CaCl2 gave self-supported gels. At neutral pH, samples showed relative structural instability, which was minimized with LBG incorporation. Formulations GSPI (pH 7, preheated to 80 °C, 15% (w/v) SPI, 10 mM CaCl2) and GMIX (pH 7, preheated to 80 °C, 15% (w/v) SPI, 0.2% (w/v) LBG, 15 mM CaCl2) were selected for emulsion-filled gels (EFG) production. Power law parameters (K′, K″), calculated from frequency sweep results, revealed that non-filled GMIX (K′: 472.1; K″: 77.6) was stronger than GSPI (K′: 170.4; K″: 33.6). Besides, GMIX showed microphase separation. SLM stabilized with Tween 80-Span 80 were active fillers in EFG, altering microstructures and increasing G’, G” and the Young’s modulus (1.8 to 2.1 kPa for GSPI and 1.4 to 2.2 kPa for GMIX).  相似文献   

14.
Frequent instillation of terbinafine hydrochloride (T HCl) eye drops (0.25%, w/v) is necessary to maintain effective aqueous humor concentrations for treatment of fungal keratitis. The current approach aimed at developing potential positively charged controlled-release polymeric nanoparticles (NPs) of T HCl. The estimation of the drug pharmacokinetics in the aqueous humor following ocular instillation of the best-achieved NPs in rabbits was another goal. Eighteen drug-loaded (0.50%, w/v) formulae were fabricated by the nanopreciptation method using Eudragit® RS100 and chitosan (0.25%, 0.5%, and 1%, w/v). Soybean lecithin (1%, w/v) and Pluronic® F68 (0.5%, 1%, and 1.5%, w/v) were incorporated in the alcoholic and aqueous phases, respectively. The NPs were evaluated for particle size, zeta potential, entrapment efficiency percentage (EE%), morphological examination, drug release in simulated tear fluid (pH 7.4), Fourier-transform IR (FT-IR), X-ray diffraction (XRD), physical stability (2 months, 4°C and 25°C), and drug pharmacokinetics in the rabbit aqueous humor relative to an oily drug solution. Spherical, discrete NPs were successfully developed with mean particle size and zeta potential ranging from 73.29 to 320.15 nm and +20.51 to +40.32 mV, respectively. Higher EE% were achieved with Eudragit® RS100-based NPs. The duration of drug release was extended to more than 8 h. FT-IR and XRD revealed compatibility between inactive formulation ingredients and T HCl and permanence of the latter’s crystallinity, respectively. The NPs were physically stable, for at least 2 months, when refrigerated. F5-NP suspension significantly (P < 0.05) increased drug mean residence time and improved its ocular bioavailability; 1.657-fold.Key words: aqueous humor, chitosan, Eudragit® RS100, nanoparticles, terbinafine hydrochloride  相似文献   

15.
Gliclazide is a second generation of hypoglycemic sulfonylurea and acts selectively on pancreatic β cell to control diabetes mellitus. The objective of this study was to produce a controlled release system of gliclazide using chitosan beads. Chitosan beads were produced by dispersion technique using tripolyphosphate (TPP) as gelating agent. The effects of process variables including chitosan molecular weight, concentration of chitosan and TPP, pH of TPP, and cross-linking time after addition of chitosan were evaluated by Taguchi design on the rate of drug release, mean release time (MRT), release efficiency (RE8%), and particle size of the beads. The blood glucose lowering effect of the beads was studied in normal and streptozotocin-diabetic rats. The optimized formulation CL2T5P2t10 with about 31% drug loading, 2.4 h MRT, and 69.16% RE8% decreased blood glucose level in normal rats for 24 h compared to pure powder of gliclazide that lasted for just 10 h.  相似文献   

16.
The purpose of the present study was to develop and characterize the chitosan sponges loading with doxycycline hyclate and their antibacterial activities. The pore density of chitosan sponge prepared with freeze drying technique was increased as the higher concentrated chitosan solution was used. The sponge prepared from 10% w/w of the chitosan solution and crosslinking with glutaraldehyde solution was utilized for loading with doxycycline hyclate. The drug release and sustainable antibacterial activity of fabricated sponge were assessed using dissolution test and agar diffusion test, respectively. Drug release from non-crosslinked sponge into phosphate buffer pH7.4 was slower than that from crosslinked sponge since the former could absorb the medium and form gel to retard the initial drug diffusion. Sustainable antibacterial activity of developed sponge was evident against S. aureus and E. coli. In conclusion, the in vitro release profile and antibacterial efficiency indicated that doxycycline hyclate could be sustained using chitosan sponge.  相似文献   

17.
Our objective was to prepare nanoparticulate system using a simple yet attractive innovated method as an ophthalmic delivery system for fluocinolone acetonide to improve its ocular bioavailability. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared by adopting thin film hydration method using PLGA/poloxamer 407 in weight ratios of 1:5 and 1:10. PLGA was used in 75/25 and 50/50 copolymer molar ratio of DL-lactide/glycolide. Results revealed that using PLGA with lower glycolic acid monomer ratio exhibited high particle size (PS), zeta potential (ZP) and drug encapsulation efficiency (EE) values with slow drug release pattern. Also, doubling the drug concentration during nanoparticles preparation ameliorated its EE to reach almost 100%. Furthermore, studies for separating the un-entrapped drug in nanoparticles using centrifugation method at 20,000 rpm for 30 min showed that the separated clear supernatant contained nanoparticles encapsulating an important drug amount. Therefore, separation of un-entrapped drug was carried out by filtrating the preparation using 20–25 μm pore size filter paper to avoid drug loss. Aiming to increase the PLGA nanoparticles mucoadhesion ability, surface modification of selected formulation was done using different amount of stearylamine and chitosan HCl. Nanoparticles coated with 0.1% w/v chitosan HCl attained most suitable results of PS, ZP and EE values as well as high drug release properties. Transmission electron microphotographs illustrated the deposition of chitosan molecules on the nanoparticles surfaces. Pharmacokinetic studies on Albino rabbit’s eyes using HPLC indicated that the prepared novel chitosan-coated PLGA nanoparticles subjected to separation by filtration showed rapid and extended drug delivery to the eye.  相似文献   

18.
Floating pH-sensitive chitosan hydrogels containing metronidazole were developed for the eradication of Helicobacter pylori from the stomach. Hydrogels were prepared by crosslinking medium or high molecular weight chitosan in lyophilized solutions containing metronidazole using either citrate or tripolyphosphate (TPP) salts at 1% or 2% concentration. A 23 factorial design was developed to study the influence of formulation parameters on the physical characteristics of the prepared hydrogels. The interaction between hydrogel components was investigated. The morphology of the prepared hydrogels was inspected and their percentage swelling, release pattern, and moisture content were evaluated. The results revealed the absence of interaction between hydrogel components and their highly porous structure. Percentage swelling of the hydrogels was much higher, and drug release was faster in gastric pH compared with intestinal pH. The formula prepared using 2% high molecular weight chitosan and 2% TPP significantly swelled (700%) within the first 4 h and released the loaded drug over a period of 24 h. Its moisture content was not affected by storage at high relative humidity. Therefore, this formula was selected to be tested in dogs for its gastric retention (using X-ray radiography) and efficacy in the eradication of H. pylori (using histopathological and microbiological examination). The results revealed that the prepared hydrogel formula was retained in dog stomach for at least 48 h, and it was more effective against H. pylori than the commercially available oral metronidazole tablets (Flagyl®).  相似文献   

19.
A glycoside hydrolase family 5 β-mannanase-encoding gene was cloned from Bacillus sp. HJ14 isolated from saline soil in Heijing town. Coding sequence of mature protein (without the predicted signal peptide from M1 to A30) was successfully expressed in Escherichia coli BL21 (DE3). Purified recombinant mannanase (rMan5HJ14) exhibited optimal activity at pH 6.5 and 65 °C. The enzyme showed good salt tolerance, retaining more than 56 % β-mannanase activity at 3.0–30.0 % (w/v) NaCl and more than 94 % of the initial activity after incubation with 3.0–30.0 % (w/v) NaCl at 37 °C for 60 min. Almost no mannanase activity was lost after incubation of rMan5HJ14 with trypsin, proteinase K, and Alcalase at 37 °C for 60 min. Surfactants and chelating agents, namely SDS, CTAB, Tween 80, Triton X-100, EDTA, and sodium tripolyphosphate, showed little or no effect (retaining >82.4 % activity) on enzymatic activity. Liquid detergents, namely Tupperware, Walch, Bluemoon, Tide, and OMO, also showed little or no effect (retaining >72.4 % activity) on enzymatic activity at 0.5–2.0 % (v/v). The enzyme further presents a high proportion (11.97 %) of acidic amino acid residues (D and E), which may affect the SDS and NaCl tolerance of the enzyme. Together, the mannanase may be an alternative for potential use in liquid detergent industry.  相似文献   

20.
In solid tumors, hypoxia (lack of oxygen) is developed, which leads to the development of resistance of tumor cells to chemotherapy and radiotherapy through various mechanisms. Nevertheless, hypoxic cells are particularly vulnerable when glycolysis is inhibited. For this reason, in this study, the development of magnetically targetable nanocarriers of the sodium-glucose transporter protein (SGLT2) inhibitor dapagliflozin (DAPA) was developed for the selective delivery of DAPA in tumors. This nanomedicine in combination with radiotherapy or chemotherapy should be useful for effective treatment of hypoxic tumors. The magnetic nanoparticles consisted of a magnetic iron oxide core and a poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (PMAA-g-PEGMA) polymeric shell. The drug (dapagliflozin) molecules were conjugated on the surface of these nanoparticles via in vivo hydrolysable ester bonds. The nanoparticles had an average size of ~ 70 nm and exhibited a DAPA loading capacity 10.75% (w/w) for a theoretical loading 21.68% (w/w). The magnetic responsiveness of the nanoparticles was confirmed with magnetophoresis experiments. The dapagliflozin-loaded magnetic nanoparticles exhibited excellent colloidal stability in aqueous and biological media. Minimal (less than 15% in 24 h) drug release from the nanoparticles occurred in physiological pH 7.4; however, drug release was significantly accelerated in pH 5.5. Drug release was also accelerated (triggered) under the influence of an alternating magnetic field. The DAPA-loaded nanoparticles exhibited higher in vitro anticancer activity (cytotoxicity) against A549 human lung cancer cells than free DAPA. The application of an external magnetic field gradient increased the uptake of nanoparticles by cells, leading to increased cytotoxicity. The results justify further in vivo studies of the suitability of DAPA-loaded magnetic nanoparticles for the treatment of hypoxic tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号