首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical and kinetic properties of δ-aminolevulinic acid synthase from wild-type and aplastidic strains of Euglena gracilis have been determined. Michaelis constants for glycine, succinyl-CoA and pyridoxal phosphate are 8.5 × 10?3m, 2.5 × 10?5m, and 2.9 × 10?6m, respectively. Optimum reaction pH is 7.8, and maximal product yield during a 30-min incubation occurs at 40 °C. Activity in frozen cell extracts remains constant for 5 days, then falls slowly to one-third of the initial value after 3 months. Enzyme activity rapidly declines irreversibly in the absence of pyridoxal phosphate. Agarose gel chromatography of the native enzyme yields a single band of activity at an elution volume corresponding to a molecular weight of 138,000. δ-Aminolevulinic acid synthase obtained from green wild-type strain Z cells is identical in its physical properties to that obtained from white aplastidic mutant strain W14 ZNalL cells.  相似文献   

2.
Abstract

Obesity is prone to cause a variety of chronic metabolic diseases, and it has aroused people’s attention that the rapid increase in the global population of obese people in the past years. As a kind of weight-loss drug acting in the intestine, lipase inhibitor does not enter the bloodstream without producing central nervous side effects. Because they do not affect the metabolism system, lipase inhibitors and obesity have become one of the hot spots in recent years. Glycolic acid is a new substrate analog inhibitor with the value of the semi-inhibitory concentration of lipase is estimated to be 17.29?±?0.14?mM. Using the plots of Lineweaver-Burk, the inhibition mechanism of lipase by glycolic acid was reversible and the inhibition type belongs to competitive inhibition with a KI value of 19.61?±?0.26?mM. The inhibitory kinetics assay showed that the microscopic velocity constant k+0 of inhibition kinetics is 1.79?×?10?3?mM?1s?1, and k?0 is 0.73?×?10?3 s?1. The results of UV full-wavelength scanning on product cumulative, fluorescence quenching and molecular simulation also indicated that glycolic acid and substrate competitive with lipase by binding to Lys137. Thereby glycolic acid inhibiting the oxidation-catalyzed reaction and reducing the product of the enzyme and substrate. This adds a new direction for the search for lipase inhibitors and provides new ideas about the development of anti-obesity drugs.

Communicated by Ramaswamy H. Sarma  相似文献   

3.
The kinetic mechanism of the reaction catalyzed by glucose-6-phosphate dehydrogenase (EC 1.1.1.49) from Dicentrarchus labrax liver was examined using initial velocity studies,NADPH and glucosamine 6-phosphate inhibition and alternate coenzyme experiments. The results are consistent with a steady-state ordered sequential mechanism in which NADP+ binds first to the enzyme and NADPH is released last. Replots of NADPH inhibition show an uncommon parabolic pattern for this enzyme that has not been previously described. A kinetic model is proposed in agreement with our kinetic results and with previously published structural studies (Bautista et al. (1988) Biochem. Soc. Trans. 16, 903–904). The kinetic mechanism presented provides a possible explanation for the regulation of the enzyme by the [NADPH]/[NADP+] ratio.  相似文献   

4.
—The major toxin of black widow spider venom, α-latrotoxin, can be iodinated with 125I with hardly any loss in biological activity. The radioactive toxin could bind specifically to a dog cerebral cortex synaptosomal membrane preparation but not to a dog liver plasma membrane preparation. The bound protein could be recovered from the neuronal membrane preparation in an unchanged form. Non-specific binding was only 6–10% of the total binding. The protein nature of the presumed receptor was indicated by the complete inhibition of the binding by either heating the membrane preparation at 70°C or treating the membrane with trypsin. Pre-incubation with 2%β-mercaptoethanol also completely inhibited the binding, while 70% inhibition was observed after pre-treatment with 10m M-EDTA or EGTA. From plots of the equilibrium binding data, it could be ascertained that the binding is non-cooperative, with an apparent equilibrium dissociation constant, K1, of 1.0 nM. Kinetic data gave an apparent association rate constant of 8.2 × 105 M?1 s?1. Dissociation followed a biphasic exponential with rate constants of 1.4 × 10?3 and 5.2 × 10?5s?1 corresponding to half-lives of 8.2 min and 3.7 h. Possible schemes for the binding interaction were proposed. Based on the present results and on previous results which indicated that α-latrotoxin causes the release of all neurotransmitters and a depletion of the synaptic vesicle population in vertebrate synapses, a hypothetical mechanism of the action for the toxin was proposed, involving the binding of the toxin to a membrane protein receptor which interacts with filamentous proteins linking the synaptic vesicles to the axolemma.  相似文献   

5.
A kinetic model of adenine and glucose incorporation into log phase yeast cells has been developed, and experimental tests of certain predictions of the model validate it. The cellular pool of purine nucleotides is 6 × 10?3 μmoles per 107 cells, the turnover time of this pool is 21.8 minutes, and the rate of incorporation into nucleic acids is 4.86 × 10?2 μmoles per hour per 107 cells. Corresponding figures for glucose are given. The model should be useful in other kinetic studies and the method of applying it is explained.  相似文献   

6.
The kinetic mechanisms of the reactions catalyzed by the two catalytic domains of aspartokinase-homoserine dehydrogenase I from Escherichia coli have been determined. Initial velocity, product inhibition, and dead-end inhibition studies of homoserine dehydrogenase are consistent with an ordered addition of NADPH and aspartate beta-semialdehyde followed by an ordered release of homoserine and NADP+. Aspartokinase I catalyzes the phosphorylation of a number of L-aspartic acid analogues and, moreover, can utilize MgdATP as a phosphoryl donor. Because of this broad substrate specificity, alternative substrate diagnostics was used to probe the kinetic mechanism of this enzyme. The kinetic patterns showed two sets of intersecting lines that are indicative of a random mechanism. Incorporation of these results with the data obtained from initial velocity, product inhibition, and dead-end inhibition studies at pH 8.0 are consistent with a random addition of L-aspartic acid and MgATP and an ordered release of MgADP and beta-aspartyl phosphate.  相似文献   

7.
The binding of 125I-labeled α-bungarotoxin to membrane fragments prepared from Limulus brain tissue has been investigated. Toxin binding approaches saturation in the range of 30 to 40 nm, with maximum binding of 2 to 6 pmol/mg of protein. The saturation kinetics and the rate of displacement of bound toxin are consistent with multiple toxin binding sites. Pharmacological studies show that binding is inhibited by both cholinergic agonists and antagonists, I50′s for inhibition by d-tubocurarine, nicotine, decamethonium, carbachol, and atropine are 2 × 10?6, 7 × 10?6, 2 × 10?5, 6 × 10?4, and 3 × 10?4m, respectively. Nicotinic ligands inhibited binding much more effectively than muscarinic ligands. Toxin binding activity was solubilized with Triton X-100. Velocity sedimentation analysis of the solubilized activity revealed three separate components. Seventy to eighty percent of the binding activity had a sedimentation coefficient of 8.6 S. The remaining activity was composed of two components with sedimentation coefficients of 15.1 and 17 S.  相似文献   

8.
A dl-lactate dehydrogenase from the bacterium, Leuconostoc mesenteroides, has been purified and characterized with respect to amino acid composition, molecular weight, and kinetic properties. The turnover number of the enzyme was 1.7 × 105 moles DPNH/mole enzyme/min for the most active of three preparations. On the basis of a sedimentation constant of 3.52 S and a diffusion constant of 5.0 × 10?7 cm2/ ml, the molecular weight of the enzyme was determined to be approximately 64,000. Similar values were derived from sedimentation equilibrium data. The enzyme exhibits typical Michaelis-Menten kinetics except when lactate is the variable substrate. In this case, double reciprocal plots of activity versus substrate concentration are curved upward, suggesting that lactate either activates or stabilizes a more active form of the enzyme.  相似文献   

9.
The tetrodotoxin binding component from garfish olfactory nerve membranes has been solubilized using the nonionic detergent Triton X-100. Tetrodotoxin binds to the solubilized component with a dissociation constant KD = 2.5 × 10?9M and under saturating conditions 1.95 × 10?12 moles of tetrodotoxin are bound per milligram of solubilized protein. Upon solubilization the toxin binding component becomes much less stable towards heat, chemical modification and enzymatic degradation. Sucrose gradient velocity sedimentation yields an S value of 9.2 for the extracted binding component and from gel filtration data the binding component appears to be slightly larger than β-D-galactosidase.  相似文献   

10.
A novel kinetic mechanism that explains the non-hyperbolic kinetics of many metal- or effector-activated enzymes is proposed as an alternative to the allosteric, hysteresis and mnemonical models. In this mechanism, the non-Michaelian behavior is generated by a reversible binding of an essential metal cation or other effector to a single site, but to at least two different enzyme forms in steady state. The model is described by a higher degree rate equation since the metal binding to more than one enzyme form generates at least two steady-state catalytic pathways of different efficiencies in addition to the recycling of the metal-enzyme species in the kinetic sequence. The proposed mechanism also explains the transition from non-hyperbolic kinetics to a Michaelian rate law, as well as the dual activation and inhibition of enzymes by the metal cation or effector, according to its concentration. This kinetic behavior is generated by the participation of the metal or effector in fast and slow competing catalytic sequences or by the competitions produced by binding as a common reactant for both the forward and reverse reactions. The model can also explain some peculiar inhibition patterns observed for some transferases. This kinetic mechanism can be tested by an experimental protocol that includes the metal cation or effector as a controlled variable reactant. The model and its complete rate equation explains the non-Michaelian behavior of choline kinase. At low ligand concentrations, an effectively ordered terreactant sequential mechanism operates (Infant. & Kinsella, 1976). The steady-state addition of choline to free enzyme is followed by the rapid-equilibrium binding of MgATp2? and the steady-state addition of Mg2+ last in the sequence. Initial velocity and product inhibition studies in the non-hyperbolic kinetic region, were consistent with a partially ordered release of reactants in which phosphocholine was the first product to dissociate from the central complex. The release sequence of the other two reactants was dependent on the prevailing Mg2+ concentration. At low Mg2+ levels, i.e. below 2·0 mM the metal cation is predominantly released after phosphocholine whereas MgADP? is the last product to dissociate under rapid-equilibrium conditions. At higher levels of the metal cation, MgADP? is predominantly released after phosphocholine leaving the Mg-enzyme complex from which Mg2+ may dissociate. However, a substantial fraction of the Mg-enzyme form is recycled in an alternate catalytic sequence in which the rapid-equilibrium binding MgATP2? to the Mg-enzyme complex is followed by the steady-state addition of choline. This pathway can also be initiated by the binding of Mg2+ to free enzyme. A third and unique sequence, which operates at low Mg2+ concentrations, includes the participation of MgADP? as an activator via a partial reversal of one of the product release sequences. In this pathway, the rapidequilibrium binding of MgADP? to free enzyme is followed by the addition of Mg2+ to the resulting transitory complex. Subsequent dissociation of MgADP? leaves the Mg-enzyme form, which is then channeled to product formation by the consecutive additions of MgATP2? and choline.  相似文献   

11.
Equilibrium dialysis indicates that rat liver glucose-6-P dehydrogenase binds two molecules of NADP+ per subunit with a dissociation constant of 0.6 × 10?6 M. The NADP+ free enzyme will not bind glucose-6-P indicating a compulsory order of substrate binding. Development of an isotopic assay allowed a direct measurement of the effect of physiological alterations in the NADP+/NADPH ratio on the activity of glucose-6-P and 6-phosphogluconate dehydrogenases. A combination of enzyme induction and altered NADP+/NADPH ratios could produce 30–50 fold changes in the capacity of these enzymes to produce NADPH during alterations in the nutritional state of the animal.  相似文献   

12.
The kinetic mechanism of NADPH-dependent aldehyde reductase II and aldose reductase, purified from human placenta, has been studied using L-glucuronate and DL-glyceraldehyde as their respective substrates. For aldehyde reductase II, the initial velocity and product inhibition studies (using NADP and gulonate) indicate that the enzyme reaction sequence is ordered with NADPH binding to the free enzyme and NADP being the last product to be released. Inhibition patterns using menadione (an analog of the aldehydic substrate) and ATP-ribose (an analog of NADPH) are also consistent with a compulsory ordered reaction sequence. Isotope effects of deuterium-substituted NADPH (NADPD) also corroborate the above reaction scheme and indicate that hydride transfer is not the sole rate-limiting step in the reaction sequence. For aldose reductase, initial velocity patterns, product, and dead-end inhibition studies indicate a random binding pattern of the substrates and an ordered release of product; the coenzyme is released last. A steady-state random mechanism is also consistent with deuterium isotope effects of NADPD on the reaction sequence catalyzed by this enzyme. However, the hydride transfer step seems to be more rate determining for aldose reductase than for aldehyde reductase II.  相似文献   

13.
Amino acid effector binding to rabbit muscle pyruvate kinase   总被引:1,自引:0,他引:1  
l-Phenylalanine, an allosteric inhibitor of rabbit muscle pyruvate kinase, is shown to bind to the tetrameric enzyme in a ratio of 4 moles effector per mole of tetramer. This binding is slightly cooperative in the absence of divalent cation activators, but the cooperativity is strongly increased when measured in the presence of 2.5 mm Mg2+ or Mn2+. The effector affinity is somewhat decreased under these conditions. l-Alanine was known to antagonize all measured phenylalanine effects and is shown here to also bind to 4 sites on the protein. The binding is noncooperative and little affected by the presence of the divalent activating cations. Competition experiments with phenylalanine and alanine suggest competition for the same site. Substrate kinetic measurements at P-enolpyruvate and Mg2+ concentrations under 100 μm show considerable inhibition of the enzyme at phenylalanine concentrations around 100 μm, near the serum levels of the free amino acid. The approach to the phenylalanine-inhibited velocity occurs with half-times less than 1 sec.  相似文献   

14.
Different amounts of abscisic acid, 2.7 × 10?9? 5 × 10?8 moles, were chromatographed in isopropanol: ammonia: water (100:14:6), firstly alone and secondly together with 5 × 10?8 moles kinetin. The same amount of kinetin was also chromatographed alone. The chromatograms were tested biologically with the Avena straight-growth test. Whereas a large part of the chromatograms of kinetin gives growth stimulation, the Rf region 0.4–0.6 of abscisic acid chromatograms is strongly growth-inhibiting. The inhibition within this Rf region does not become less if abscisic acid and kinetin are chromatographed together.  相似文献   

15.
The interaction kinetics of the three anthracycline antibiotics, daunomycin, adriamycin and iremycin, with calf thymus DNA has been investigated using the temperature-jump technique. Experimental data obtained at high binding ratio have been fitted by a kinetic theory which, for the binding of large ligands to a linear polymer chain, takes into account both nearest-neighbour ligand interaction and the overlap of potential binding sites. The kinetics of such cooperative binding according to a single-step mechanism can be described completely by two independent microscopic parameters, namely one rate constant and a kinetic cooperativity parameter. Both these parameters have been determined for the three anthracyclcine antibiotics, making use of the known equilibrium binding parameters. The association rate constant in the singly contiguous case turns out to be almost the same for all three antibiotics (7 × 106 to 8 × 106 1 mol?1 s?1), while the corresponding dissociation rate constant ranges from 3.5 s?1 for adriamycin to 10 s?1 for daunomycin and about 35 s?1 for iremycin. The different equilibrium binding constants thus correspond to different mean attachment times of the antibiotics at the polymer chain, which positively correlate with the inhibitory action of these drugs on in vitro DNA synthesis. Nearest-neighbour interaction in the case of adriamycin-DNA binding kinetics implies that adriamycin molecules dissociate from an isolated binding site nine times more frequently than from a site between two adjacent ligands.  相似文献   

16.
The reaction mechanism of aspartate transcarbamylase from mouse spleen has been determined, using steady-state kinetics, isotope-exchange experiments, inhibition studies with a transition-state analog, and product-inhibition studies. Intersecting reciprocal plots obtained when one substrate was varied against different concentrations of the second substrate indicate that the mechanism is sequential. The transition-state analog, N-(phosphonacetyl)-l-aspartate, was a powerful inhibitor of aspartate transcarbamylase, with an inhibition constant (Ki) of 2.6 × 10?8m at 37 °C and pH 7.4 in 0.05 m Na HEPES buffer. PALA gave competitive inhibition with carbamyl phosphate and noncompetitive inhibition with l-aspartate, indicating that carbamyl phosphate must bind before aspartate for catalysis to occur. A ping-pong mechanism in which carbamyl phosphate binds first was excluded by isotope-exchange experiments, since [32P]inorganic phosphate was not incorporated into carbamyl phosphate in the absence of aspartate. Product-inhibition studies showed that only inorganic phosphate and carbamyl phosphate gave a competitive pattern; all other combinations of substrate and product gave noncompetitive inhibition patterns when incubations were carried out at subsaturating concentrations of the second substrate. These inhibition patterns showed that carbamyl phosphate binds first, aspartate binds second, carbamyl aspartate dissociates first, and phosphate dissociates second.  相似文献   

17.
A simple procedure, exploiting an affinity chromatography step on agarose-linked adenosine 2′,5′-bisphosphate, allows the concurrent purification from human red cell lysates of glucose 6-phosphate dehydrogenase (G6PD) and of another protein (FX). The latter, which has a higher electrophoretic mobility than G6PD, is not identifiable with any of a number of erythrocyte enzymes. It is a holoprotein, composed in its native form of two polypeptide chains of 33,000 Mr each and of one NADP equivalent. Native FX binds NADPH and this binding is competitive with NADP: The corresponding stoichiometry is 0.5 NADPH equivalents per 33,000 Mr (“half-site reactivity”), with a dissociation constant of 1 × 10?8m. On the basis of competition experiments, the dissociation constant for NADP is estimated to be 1.8 × 10?7m.  相似文献   

18.
The kinetics of the reaction of Helix pomatia haemocyanin with oxygen have been studied under conditions where ligand binding is co-operative (n = 4.5). The dissociation of oxygen from oxyhaemocyanin in the presence of sodium dithionite and the combination of deoxyhaemocyanin with oxygen were studied by the stopped-flow technique. The combination with oxygen, as well as the dissociation of oxyhaemocyanin, are clearly autocatalytic. The initial rate constant for oxygen combination to the fully deoxygenated state is 0.2 to 0.3 × 106m?1 s?1; during the course of the reaction the rate constant increases to a value higher than 106m?1s?1.The initial rate of oxygen dissociation from fully saturated haemocyanin is 10 s?1, increasing to about 30 s?1 as the reaction proceeds. Thus, both the combination and the dissociation rate constants contribute to the co-operativity of oxygen binding.Temperature-jump relaxation experiments were carried out at fractional oxygen saturations larger than 0.7. The dependence of the relaxation rate upon the concentration of the reactants indicates the presence of one principal bimolecular process. The calculated combination and dissociation rate constants for this process are: 3.8 × 106m?1 s?1 and 10 s?1, respectively. Evidence is presented which shows that the transition from the T-state to the R-state of the protein is relatively slow. Both the T and R-state seem to be largely stabilized at the expense of intermediate states.Under other conditions, where oxygen binding is non-co-operative, temperature-jump and stopped-flow experiments reveal considerable kinetic heterogeneity.  相似文献   

19.
Initial velocity steady-state substrate kinetics for the ATP phosphoribosyltransferase reaction in the biosynthetic direction were determined and are consistent with a sequential kinetic mechanism. To hold the fractions of magnesium-complexed substrates and products constant so as to avoid possible distortion of reciprocal velocity plots Mg2+ binding constants to the substrates ATP and phosphoribosylpyrophosphate and the product pyrophosphate were measured under assay conditions. Several conformational states of the phosphoribosyltransferase distinguishable by other criteria gave similar substrate kinetic behavior. Product inhibition studies were conducted to elucidate the binding order. Phosphoribosyl-ATP was competitive with respect to ATP and was non-competitive with respect to phosphoribosylpyrophosphate. Pyrophosphate was non-competitive with respect to both substrates. The data are consistent with the ordered Bi-Bi kinetic mechanism with ATP binding first to free enzyme and phosphoribosyl-ATP dissociating last from enzyme-product complexes.  相似文献   

20.
The steady-state kinetics of the NADPH + FAD-dependent reduction of nitrate by nitrate reductase from Penicilliumchrysogenum was studied at pH 6.18. At this sub-optimum pH, Vmax was about 83 units × mg protein?1 compared with 225 units × mg protein?1 at pH 7.20. All initial velocity reciprocal plot patterns at pH 6.18 as well as the NADP+/nitrate product inhibition pattern were intersecting. In contrast, the NADP(H)/nitrate plots at pH 7.20 were parallel (Renosto, F. etal. J. Biol. Chem. 256, 8616, 1981). A major effect of lowering the assay pH was to change the Km for FAD from 0.17 μM at pH 7.20 to 4 μM at pH 6.18. The results suggest that nitrate reductase has a steady-state random kinetic mechanism in which kcat in the forward direction at pH 7.20 (ca. 375 sec?1) is greater that koff for the dissociation of one or more substrates. Several observations suggest that koff for FAD is extremely small at pH 7.20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号