首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sea urchin egg fertilization requires the species-specific interaction of molecules on the sperm and egg surfaces. Previously, we isolated an extracellular, 70-kD glycosylated fragment of the S. purpuratus egg receptor for sperm by treating the eggs with lysylendoproteinase C (Foltz, K. R., and W. J. Lennarz. 1990. J. Cell Biol. 111:2951-2959). To characterize the receptor further, we have generated a polyclonal antiserum (anti-70KL) against the purified 70-kD fragment. Anti-70KL was found to react with a single polypeptide of approximately 350 kD on Western blots, presumed to be the intact receptor, in an egg cell surface preparation. This polypeptide appeared to be tightly associated with the plasma membrane/vitelline layer complex, as it was released from these preparations only by detergent treatment. Immunofluorescence microscopy revealed that the receptor was distributed evenly over the egg surface. The anti-70KL was species specific both in its ability to recognize the egg surface protein and to inhibit sperm binding. Fab fragments generated from affinity-purified anti-70KL also bound to the egg surface and inhibited sperm binding in a concentration-dependent manner. Interestingly, treatment with Fabs caused a small percentage of eggs to undergo cortical granule exocytosis, even in the absence of external Ca2+. These results confirm earlier findings indicating that the receptor is a cell surface glycoprotein of high molecular weight that species specifically binds sperm. This antiserum provides a powerful tool for further investigation of gamete interactions and the structure of the sperm receptor.  相似文献   

2.
Eggs of the sea urchins Strongylocentrotus purpuratus and Arbacia punctulata bind sperm with a high degree of species specificity. By use of an in vitro assay that utilizes bindin (the protein from sperm that mediates sperm-egg binding) egg surface-derived glycoconjugates that function as receptors in this adhesion process have been identified and purified. These glycoconjugates are of extraordinarily high molecular weight and exhibit some properties expected for a proteoglycan. The isolated receptors from both species bind to sperm and inhibit fertilization species specifically. Both receptors contain active carbohydrate-rich fragments that can be liberated by proteolytic digestion. The carbohydrate-rich receptor fragment from S. purpuratus is a very high-molecular-weight (>106), negatively charged glycosaminoglycan-like polymer containing fucose, galactosamine, iduronic acid, and sulfate esters. By contrast, the carbohydrate-rich fragment derived from the A. punctulata receptor is of defined molecular weight (6000) and has no net charge. Incubation of acrosome-reacted sperm with nanomolar amounts of the carbohydrate-rich fragments from either species results in inhibition of fertilization, indicating that these receptor fragments retain sperm binding activity. However, studies utilizing heterologous gametes show that the carbohydrate-rich receptor fragments are not species specific in binding. Thus, it appears that although the carbohydrate chains of the receptor are an adhesive element of the receptor, the intact glycoconjugate is required for species-specific binding.  相似文献   

3.
The sea urchin sperm receptor isolated from the eggs of Strongylocentrotus purpuratus is a high molecular weight proteoglycan-like molecule. Previous studies in our laboratory suggested that the sperm receptor has two functional components, glycosaminoglycan chains that are responsible for sperm binding and polypeptide chains that control species specificity in the binding process. We have investigated this idea further by generating fragments of the receptor by limited proteolytic digestion of the egg cell surface. The results of experiments with these receptor preparations support the hypothesis that the species specificity of inhibition of fertilization observed in a competitive bioassay is conferred by the polypeptide portion of the receptor molecule. Studies with various receptor preparations reveal that the presence of at least 30% of the polypeptide by weight is required to inhibit fertilization species specifically. Receptor preparations containing less than 10% protein lack species specificity and inhibit fertilization in both S. purpuratus and Arbacia punctulata.  相似文献   

4.
Boar sperm acrosin is an acrosomal protease with trypsin-like specificity, and it functions in fertilization by assisting sperm passage through the zona pellucida by limited hydrolysis of this extracellular matrix. In addition to a proteolytic active site domain, acrosin binds the zona pellucida at a separate binding domain that is lost during proacrosin autolysis. In this study, we quantitate the binding of proacrosin to the physiological substrate for acrosin, the zona pellucida, and to a non-substrate, the polysulfated polysaccharide fucoidan. Binding was analogous to sea urchin sperm bindin that binds egg jelly fucan and the vitelline envelope of sea urchin eggs. Proacrosin was found to bind to fucoidan and to the zona pellucida with binding affinities similar to bindin interaction with egg jelly fucan. These interactions were competitively inhibited by similar relative molecular mass polysulfated polymers. Since bindin and proacrosin have distinctly different amino acid sequences, their interaction with acidic sulfate esters demonstrates an example of convergent evolution wherein different macromolecules localized in analogous sperm compartments have the same biological function. From cDNA sequence analysis of proacrosin, this binding may be mediated through a consensus sequence for binding sulfated glycoconjugates. Proacrosin binding to the zona pellucida may serve as both a recognition or primary sperm receptor, as well as maintaining the sperm on the zona pellucida once the acrosome reaction has occurred.  相似文献   

5.
The species-specific binding of sea urchin sperm to the egg is mediated by an egg cell surface receptor. Although earlier studies have resulted in the cloning and sequencing of the receptor, structure/function studies require knowledge of the structure of the mature cell surface protein. In this study, we report the purification of this glycoprotein to homogeneity from a cell surface complex of Strongylocentrotus purpuratus eggs using lectin and ion exchange chromatography. Based on the yield of receptor it can be calculated that each egg contains approximately 1.25 x 10(6) receptor molecules on its surface. The receptor, which has an apparent M(r) of 350 kD, is a highly glycosylated transmembrane protein composed of approximately 70% carbohydrate. Because earlier studies on the partially purified receptor and on a pure, extracellular fragment of the receptor indicated that the carbohydrate chains were important in sperm binding, we undertook compositional analysis of the carbohydrate in the intact receptor. These analyses and lectin binding studies revealed that the oligosaccharide chains of the receptor are sulfated and that both N- and O-linked chains are present. Functional analyses revealed that the purified receptor retained biological activity; it inhibited fertilization in a species-specific and dose-dependent manner, and polystyrene beads coated with it bound to acrosome-reacted sperm in a species-specific manner. The availability of biochemical quantities of this novel cell recognition molecule opens new avenues to studying the interaction of complementary cell surface ligands in fertilization.  相似文献   

6.
Recent investigations on the sea urchin egg receptor for spermhave led to its sequencing and the demonstration that it isa 350 kDa glycoprotein. In the current study, the N- and O-linkedoligosaccharide chains were cleaved from the protein fractionatedon concanavalin A-agarose. The putative O-linked oligosaccharidechains that did not bind to the lectin were further fractionatedby anion-exchange chromatography. Using a competition bioassaythat measured the ability of these oligosaccharide chains toinhibit fertilization, it was found that the N-linked chainswere devoid of inhibitory activity. Rather, the inhibitory activitywas localized to the O-linked chains, with the most highly charged,sulphated chains showing the highest inhibitory activity. Thebioactive oligosaccharides were labelled by reduction and assayedfor binding to sperm. The results of the binding assay, coupledwith the fertilization bioassay, indicate that the oligosaccharidesinhibit fertilization by binding to acrosome-reacted sperm.The bioactive oligosaccharide lacked species specificity infertilization bioassays, unlike the intact receptor and a recombinantaglyco protein containing only the extracellular domain of thereceptor. Since previous work showed that the recombinant proteininhibits fertilization species specifically and binds to acrosome-reactedsperm, a two-step model of sperm-egg interaction is proposed.The first step is postulated to be a low-affinity ionic interactionof the sulphated O-linked oligosaccharide chains of the receptorwith sperm that is not species specific. This is followed bya high affinity, species-specific interaction of the sperm withone or more binding sits on the polypeptide chain of the receptor. fertilization oligosaccharide receptor sea urchin egg sea urchin sperm  相似文献   

7.
We have attempted to identify a surface component of echinoderm eggs that is involved in the species-specific binding of sperm. Cell surface membranes from eggs of the sea urchins Strongylocentrotus purpuratus or Arbacia punctulata were radioiodinated, detergent-treated, and subjected to density-gradient centrifugation. In the presence of bindin, the complementary binding protein isolated from sperm, one component of the membranes sedimented to a different density. This membrane component bound-species specifically to sperm that had undergone the acrosome reaction. This binding led to an inhibition of the ability of treated sperm to fertilize eggs. Exhaustive proteolytic digestion of this receptor fraction yields a high molecular weight glycopeptide that can also bind to bindin. It therefore appears that this egg surface membrane fraction contains a functionally intact, species-specific receptor for sperm.  相似文献   

8.
The role of cell surface glycoproteins of the sea urchin egg in binding sperm has been examined by studying the biological activity of glycopeptides derived from these glycoproteins. Glycopeptides were produced from egg surface glycoproteins by Pronase digestion. After fractionation by gel filtration the glycopeptides were tested for their ability to inhibit the binding of sperm to eggs, presumably by competing with the egg surface glycoproteins for binding sites on the sperm. One glycopeptide fraction with an apparent molecular weight of approximately 6,000 was found to be a potent inhibitor of sperm-egg binding, as well as fertilization, even at nanomolar concentrations. This activity was heat stable and exerted its effect against the sperm and not the egg. Experiments with a radiolabeled form of the glycopeptide fraction directly demonstrated that at least one component of it bound to sperm. Specific binding of the radiolabeled glycopeptide occurred only to acrosome-reacted sperm. Because the isolated glycopeptide fraction has many of the characteristics that one would expect of a biologically active fragment of an egg surface receptor for sperm, these findings are consistent with the idea that one or more glycoconjugates on the surface of the egg are involved in sperm binding.  相似文献   

9.
《The Journal of cell biology》1986,102(4):1363-1371
The extracellular coat, or zona pellucida, of mammalian eggs contains species-specific receptors to which sperm bind as a prelude to fertilization. In mice, ZP3, one of only three zona pellucida glycoproteins, serves as sperm receptor. Acrosome-intact, but not acrosome-reacted, mouse sperm recognize and interact with specific O- linked oligosaccharides of ZP3 resulting in sperm-egg binding. Binding, in turn, causes sperm to undergo the acrosome reaction; a membrane fusion event that results in loss of plasma membrane at the anterior region of the head and exposure of inner acrosomal membrane with its associated acrosomal contents. Bound, acrosome-reacted sperm are able to penetrate the zona pellucida and fuse with the egg's plasma membrane (fertilization). In the present report, we examined binding of radioiodinated, purified, egg ZP3 to both acrosome intact and acrosome reacted sperm by whole-mount autoradiography. Silver grains due to bound 125I-ZP3 were found localized to the acrosomal cap region of heads of acrosome-reacted sperm. Under the same conditions, 125I-fetuin bound at only bacKground levels to heads of both acrosome-intact and - reacted sperm, and 125I-ZP2, another zona pellucida glycoprotein, bound preferentially to acrosome-reacted sperm. These results provide visual evidence that ZP3 binds preferentially and specifically to heads of acrosome intact sperm; properties expected of the mouse egg's sperm receptor.  相似文献   

10.
Direct isolation of the sea urchin egg vitelline envelope with intact sperm receptors is difficult because the envelope is firmly attached to the egg plasma membrane. We now report a method for producing an inseminated egg preparation in Strongylocentrotus purpuratus (using soybean trypsin inhibitor [STI] and Ca2+, Mg2+-free seawater) that contains an elevated vitelline envelope (VE*-STI). The VE*-STI is devoid of cortical granule material, and supernumerary sperm do not detach postinsemination, suggesting that the VE*-STI contains active sperm receptors. VE*-STIs contain a 305-kD polypeptide and additional components that range from 225 to 31 kD, whereas the 305-kD polypeptide was considerably reduced in VE*s. Electrophoresis of sperm receptor hydrolase digests of VE*-STIs showed that the 305-kD polypeptide and several other envelope polypeptides are protease substrates. Univalent Fab fragments against VE*s, VE*-STIs, and 305 and 225-kD polypeptides blocked sperm binding and fertilization in an Fab concentration-dependent manner. The 305 and 225-kD polypeptides were localized in the VE*-STI using indirect immunofluorescence. Enzyme-linked immunosorbent assays showed that the 305 and 225-kD polypeptides share determinants, suggesting that the 225-kD polypeptide may be derived from the 305-kD polypeptide by the proteolysis that occurs at the cell surface during fertilization. Fab fragments against S purpuratus VE*-STI antigens neither bound to nor blocked homologous sperm binding and fertilization of Lytechinus variegatus eggs. Cross fertilizability occurred to the extent of 5% or less between L variegatus and S purpuratus, therefore, we conclude that the 305 kD-polypeptide isolated from S purpuratus is a species-specific vitelline envelope sperm receptor.  相似文献   

11.
The sperm protein bindin is responsible for the species-specific adhesion of the sperm to the egg. The regions of the bindin molecule responsible for forming the contact between the sperm and the egg were investigated by measuring the ability of peptides representing various regions of the bindin sequence to inhibit fertilization. Twenty-four peptides were studied: 7 based on the Strongylocentrotus purpuratus bindin sequence, 11 based on the S. franciscanus bindin sequence, and 6 control peptides. Values for the concentration of peptide required to inhibit 50% of the productive sperm contacts (IC50) were extracted from experimental measurements of the extent of fertilization in the presence of various concentrations. of these peptides. The IC50 value averaged 220 microM for the control peptides. Active peptides representing certain specific subregions of the bindin sequence displayed IC50 values < 10% of the average value for control peptides, and the IC50 for the most potent of the peptides tested was only approximately 1% of the control peptide value (IC50 = 2.2 microM). Furthermore, we found that a peptide representing a particular region of the S. franciscanus bindin sequence that differs from the S. purpuratus bindin sequence inhibits fertilization species specifically. For the reaction of S. purpuratus sperm and eggs, the IC50 of this peptide was approximately 120 microM, whereas for the reaction of S. franciscanus sperm and eggs it was only 8.6 microM. These results demonstrate that a few specific regions of the bindin molecule are involved in the sperm-egg contact and that certain of these regions mediate the species specificity of the interaction in a sequence-specific manner.  相似文献   

12.
During fertilization in mice, acrosome-intact sperm bind via plasma membrane overlying their head to a glycoprotein, called ZP3, present in the egg extracellular coat or zona pellucida. Bound sperm then undergo the acrosome reaction, which results in exposure of inner acrosomal membrane, penetrate through the zona pellucida, and fuse with egg plasma membrane. Thus, in the normal course of events, acrosome-reacted sperm must remain bound to eggs, despite loss of plasma membrane from the anterior region of the head and exposure of inner acrosomal membrane. Here, we examined maintenance of binding of sperm to the zona pellucida following the acrosome reaction. We found that polyclonal antisera and monoclonal antibodies directed against ZP2, another zona pellucida glycoprotein, did not affect initial binding of sperm to eggs, but inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. On the other hand, polyclonal antisera and monoclonal antibodies directed against ZP3 did not affect either initial binding of acrosome-intact sperm to eggs or maintenance of binding following the acrosome reaction. We also found that soybean trypsin inhibitor, a protein reported to prevent binding of mouse sperm to eggs, did not affect initial binding of sperm to eggs, but, like antibodies directed against ZP2, inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. These and other observations suggest that ZP2 serves as a secondary receptor for sperm during the fertilization process in mice and that maintenance of binding of acrosome-reacted sperm to eggs may involve a sperm, trypsin-like proteinase.  相似文献   

13.
A quantitative assay was developed to study the interaction of Xenopus laevis sperm and eggs. Using this assay it was found that sperm bound in approximately equal numbers to the surface of both hemispheres of the unfertilized egg, but not to the surface of the fertilized egg. To understand the molecular basis of sperm binding to the egg vitelline envelope (VE), a competition assay was used and it was found that solubilized total VE proteins inhibited sperm-egg binding in a concentration-dependent manner. Individual VE proteins were then isolated and tested for their ability to inhibit sperm binding. Of the seven proteins in the VE, two related glycoproteins, gp69 and gp64, inhibited sperm-egg binding. Polyclonal antibody was prepared that specifically recognized gp69 and gp64. This gp69/64 specific antibody bound to the VE surface and blocked sperm binding, as well as fertilization. Moreover, agarose beads coated with gp69/64 showed high sperm binding activity, while beads coated with other VE proteins bound few sperm. Treatment of unfertilized eggs with crude collagenase resulted in proteolytic modification of only the gp69/64 components of the VE, and this modification abolished sperm-egg binding. Small glycopeptides generated by Pronase digestion of gp69/64 also inhibited sperm-egg binding and this inhibition was abolished by treatment of the glycopeptides with periodate. Based on these observations, we conclude that the gp69/64 glycoproteins in the egg vitelline envelope mediate sperm-egg binding, an initial step in Xenopus fertilization, and that the oligosaccharide chains of these glycoproteins may play a critical role in this process.  相似文献   

14.
The interactions between sea urchin spermatozoa and ova duringfertilization usually exhibit a high degree of species specificity.Under natural conditions and reasonable gamete concentrations,most interspecific inseminations fail to yield zygotes. Macromoleculeson the external surfaces of the apposing gametes must surelybe responsible for successful gamete recognition, adhesion andfusion. Species specific recognition between surface componentsof sperm and egg could occur during at least three events comprisingthe fertilization process. The first event is the interactionof the sperm plasma membrane with the egg jelly coat. This inducesthe sperm acrosome reaction resulting in the exocytosis of the"bindin" -containing acrosome granule and also the extrusionof the acrosome process from the anterior tip of the sperm.The second event is the adhesion of the bindin-coated acrosomeprocess to glycoprotein "bindin receptors" on the external surfaceof the egg vitelline layer. The third event is the penetrationof the vitelline layer and the fusion of sperm and egg plasmamembranes. With the isolations of the component of egg jellywhich induces the acrosome reaction, sperm bindin from the acrosomevesicle and the egg surface bindin receptor from the vitellinelayer, there is hope of discovering the molecular basis of thismost interesting intercellular interaction which results inthe activation of embryonic development.  相似文献   

15.
Sperm-egg plasma membrane fusion during fertilization was studied using guinea pig gametes and mAbs to sperm surface antigens. The mAb, PH-30, strongly inhibited sperm-egg fusion in a concentration-dependent fashion. When zona-free eggs were inseminated with acrosome-reacted sperm preincubated in saturating (140 micrograms/ml) PH-30 mAb, the percent of eggs showing fusion was reduced 75%. The average number of sperm fused per egg was also reduced by 75%. In contrast a control mAb, PH-1, preincubated with sperm at 400 micrograms/ml, caused no inhibition. The PH-30 and PH-1 mAbs apparently recognize the same antigen but bind to two different determinants. Both mAbs immunoprecipitated the same two 125I-labeled polypeptides with Mr 60,000 (60 kD) and Mr 44,000 (44 kD). Boiling a detergent extract of sperm severely reduced the binding of PH-30 but had essentially no effect on the binding of PH-1, indicating that the two mAbs recognize different epitopes. Immunoelectron microscopy revealed that PH-30 mAb binding was restricted to the sperm posterior head surface and was absent from the equatorial region. The PH-30 and PH-1 mAbs did not bind to sperm from the testis, the caput, or the corpus epididymis. PH-30 mAb binding was first detectable on sperm from the proximal cauda epididymis, i.e., sperm at the developmental stage where fertilization competence appears. After purification by mAb affinity chromatography, the PH-30 protein retained antigenic activity, binding both the PH-30 and PH-1 mAbs. The purified protein showed two polypeptide bands of 60 and 44 kD on reducing SDS PAGE. The two polypeptides migrated further (to approximately 49 kD and approximately 33 kD) on nonreducing SDS PAGE, showing that they do not contain interchain disulfide bonds, but probably have intrachain disulfides. 44 kD appears not to be a proteolytic fragment of 60 kD because V8 protease digestion patterns did not reveal related peptide patterns from the 44- and 60-kD bands. In the absence of detergent, the purified protein precipitates, suggesting that either 60 or 44 kD could be an integral membrane polypeptide.  相似文献   

16.
Sperm-egg interaction is a carbohydrate-mediated species-specific event which initiates a signal transduction cascade resulting in the exocytosis of sperm acrosomal contents (i.e., the acrosome reaction). This step is believed to be a prerequisite which enables the acrosome-reacted spermatozoa to penetrate the zona pellucida (ZP) and fertilize the egg. Successful fertilization in the mouse and several other species, including man, involves several sequential steps. These are (1) sperm capacitation in the female genital tract; (2) binding of capacitated spermatozoa to the egg's extracellular coat, the ZP; (3) induction of acrosome reaction (i.e., sperm activation); (4) penetration of the ZP; and (5) fusion of spermatozoon with the egg vitelline membrane. This minireview focuses on the most important aspects of the sperm acrosome, from its formation during sperm development in the testis (spermatogenesis) to its modification in the epididymis and function following sperm-egg interaction. Special emphasis has been given to spermatogenesis, a complex process involving multiple molecular events during mitotic cell division, meiosis, and the process of spermiogenesis. The last event is the final phase when a nondividing round spermatid is transformed into the complex structure of the spermatozoon containing a well-developed acrosome. Our intention is also to briefly discuss the functional significance of the contents of the sperm acrosome during fertilization. It is important to mention that only the carbohydrate-recognizing receptor molecules (glycohydrolases, glycosyltransferases, and/or lectin-like molecules) present on the surface of capacitated spermatozoa are capable of binding to their complementary glycan chains on the ZP. The species-specific binding event starts a calcium-dependent signal transduction pathway resulting in sperm activation. The hydrolytic and proteolytic enzymes released at the site of sperm-zona interaction along with the enhanced thrust of the hyperactivated beat pattern of the bound spermatozoon, are important factors in regulating the penetration of the zona-intact egg.  相似文献   

17.
We have examined the carbohydrate specificity of bindin, a sperm protein responsible for the adhesion of sea urchin sperm to eggs, by investigating the interaction of a number of polysaccharides and glycoconjugates with isolated bindin. Several of these polysaccharides inhibit the agglutination of eggs by bindin particles. An egg surface polysaccharide was found to be the most potent inhibitor of bindin- mediated egg agglutination. Fucoidin, a sulfated fucose heteropolysaccharide, was the next most potent inhibitor, followed by the egg jelly fucan, a sulfated fucose homopolysaccharide, and xylan, a beta(1 leads to 4) linked xylose polysaccharide. A wide variety of other polysaccharides and glycoconjugates were found to have no effect on egg agglutination. We also report that isolated bindin has a soluble lectinlike activity which is assayed by agglutination of erythrocytes. The bindin lectin activity is inhibited by the same polysaccharides that inhibit egg agglutination by particulate bindin. This suggests that the egg adhesion activity of bindin is directly related to its lectin activity. We have established that fucoidin binds specifically to bindin particles with a high apparent affinity (Kd = 5.5 X 10(-8) M). The other polysaccharides that inhibit egg agglutination also inhibit the binding of 125I-fucoidin to bindin particles, suggesting that they compete for the same site on bindin. The observation that polysaccharides of different composition and linkage type interact with bindin suggests that the critical structural features required for binding may reside at a higher level of organization. Together, these findings strengthen the hypothesis that sperm-egg adhesion in sea urchins is mediated by a lectin-polysaccharide type of interaction.  相似文献   

18.
Bindin specifically binds to egg surface sulfated fucan polysaccharides and mediates the attachment of sperm to the egg during fertilization. Sulfate esters are critical for this interaction. We have examined the effect of different anionic groups on the relative binding affinities of a series of homologous anionic polymers for bindin to determine the extent to which other charged moieties can substitute for sulfate. We found that bindin displays a remarkable specificity for sulfate- or sulfonic acid-containing polymers. The relative affinities of poly(vinyl sulfate) and poly(styrenesulfonic acid) are four orders of magnitude higher than polymers containing phosphate esters or carboxyl groups. The bindin-mediated aggregation of sea urchin eggs was inhibited by the sulfated polymers but not the other anionic polymers. This high degree of selectivity for sulfated polymers is not observed for the binding of the polyanions to most other proteins and basic polypeptides. These results suggest that the binding is not due to the formation of simple salt bridges, and that all three non-ester oxygen atoms of the sulfate groups are involved in multiple bonding interactions with a complementary 'docking site' on the bindin polypeptide. The orientation of the polysaccharide sulfate oxygen atoms relative to the protein binding site may be an important determinant of the specificity of polysaccharide binding.  相似文献   

19.
Since many cell surface receptors exist in their active form as oligomeric complexes, we have investigated the subunit composition of the biologically active sperm receptor in egg plasma membranes from Strongylocentrotus purpuratus. Electrophoretic analysis of the receptor without prior reduction of disulfide bonds revealed that the surface receptor exists in the form of a disulfide-bonded multimer, estimated to be a tetramer. These findings are in excellent agreement with the fact that the NH2-terminus of the extracellular domain of the sperm receptor is rich in cysteine residues. Studies with cross-linking agents of various length and hydrophobicity suggest that no other major protein is tightly associated with the receptor. Given the multimeric structure of the receptor, we investigated the effect of disulfide bond reduction on its biological activity. Because in quantitative bioassays fertilization was found to be inhibited by treatment of eggs with 5 mM dithiothreitol, we undertook more direct studies of the effect of reduction on properties of the receptor. First, we studied the effect of addition of isolated, pure receptor on fertilization. Whereas the non-reduced, native receptor complex inhibited fertilization in a dose- dependent manner, the reduced and alkylated receptor was inactive. Second, we tested the ability of the isolated receptor to mediate binding of acrosome-reacted sperm to polystyrene beads. Whereas beads coated with native receptor bound sperm, those containing reduced and alkylated receptor did not. Thus, these results demonstrate that the biologically active form of the sea urchin sperm receptor consists only of 350 kD subunits and that these must be linked as a multimer via disulfide bonds to produce a complex that is functional in sperm recognition and binding.  相似文献   

20.
Prior studies from this laboratory have identified a proteoglycan-like component of high molecular weight from the surface of the egg of the sea urchin Strongylocentrotus purpuratus that serves as a receptor for sperm. In the present study, a glycoconjugate has been isolated from uncrosslinked fertilization envelopes prepared from eggs activated by treatment with ionophore. Based on its high molecular weight (greater than 5 X 10(6)) and its ability to inhibit fertilization by acrosome-reacted sperm, this glycoconjugate has the properties of the previously described sperm receptor. Components of the fertilization envelope of lower molecular weight (less than 10(6)) showed little or no ability to inhibit fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号