首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Phosphatidylinositol-specific phospholipase C (PIPLC) quantitatively solubilizes acetylcholinesterase (AChE) from purified synaptic plasma membranes and intact synaptosomes of Torpedo ocellata electric organ. The solubilized AChE migrates as a single peak of sedimentation coefficient 7.0S upon sucrose gradient centrifugation, corresponding to a subunit dimer. The catalytic subunit polypeptide of AChE is the only polypeptide detectably solubilized by PIPLC. This selective removal of AChE does not affect the amount of acetylcholine released from intact synaptosomes upon K+ depolarization. PIPLC also quantitatively solubilizes AChE from the surface of intact bovine and rat erythrocytes, but only partially solubilizes AChE from human and mouse erythrocytes. The AChE released from rat and human erythrocytes by PIPLC migrates as a approximately 7S species on sucrose gradients, corresponding to a catalytic subunit dimer. PIPLC does not solubilize particulate AChE from any of the brain regions examined of four mammalian species. Several other phospholipases tested, including a nonspecific phospholipase C from Clostridium welchii, fail to solubilize AChE from Torpedo synaptic plasma membranes, rat erythrocytes, or rat striatum.  相似文献   

2.
The major molecular form of acetylcholinesterase (AChE) from chicken brain is a membrane-bound glycoprotein with an apparent sedimentation coefficient of 11.4 S. Analysis of the purified protein by gel filtration, velocity sedimentation, and sodium dodecyl sulfate-gel electrophoresis shows that the solubilized enzyme is a globular tetramer with an apparent Mr = 420,000. This membrane-bound form of AChE is hydrophobic and readily aggregates in the absence of detergent. These aggregates are concentration-dependent, relatively stable in the presence of high salt concentrations, yet readily dissociate upon addition of detergent to the 11.4 S form, indicating that the interactions are hydrophobic. Polyclonal and monoclonal antibodies raised against chicken brain AChE purified by ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis precipitate AChE enzyme activity. However, these antibodies do not cross-react with the enzyme from chicken muscle which preferentially hydrolyses butyrylcholine. Immunoprecipitation of isotopically labeled enzyme molecules from tissue cultured brain cells and analysis by sodium dodecyl sulfate-gel electrophoresis shows that AChE consists of two polypeptide chains with apparent Mr = 105,000 (alpha) and 100,000 (beta) in a 1:1 ratio. Immunoblotting of brain AChE with either the polyclonal or monoclonal antibodies indicates that the alpha and beta chains share antigenic determinants. Furthermore, both polypeptide chains can be labeled with [3H]diisopropyl fluorophosphate, indicating that they each contain a catalytic site. This is the first indication that globular forms of AChE may consist of multiple polypeptide chains.  相似文献   

3.
1. Xenopus laevis oocytes express endogenously two components of the cholinergic system: the muscarinic receptors and the acetylcholinesterase (AChE). 2. A biochemical characterization of this enzyme was carried out. 3. The results established that the activity found in the oocytes correspond to 'true' AChE with a molecular weight of 65,000 Da and a sedimentation coefficient of 3-4 S. 4. The enzyme aggregates in the absence of detergent suggesting that it possess an hydrophobic character; despite that, it is not sensitive to PIPLC. 5. A comparison with the Xenopus brain and muscle AChE shows different post-translational modifications and catalytic properties with the oocyte AChE.  相似文献   

4.
Extraction of human caudate nucleus under high-ionic-strength conditions solubilized 20-30% of total acetylcholinesterase (AChE) activity. Density gradient centrifugation revealed monomeric (5.0 S) and tetrameric (11.0 S) enzyme species. The purified, tetrameric salt-soluble (SS) AChE sedimented at 10.6 S and did not bind detergents. It showed an immunochemical reaction of identity with the detergent-soluble (DS) AChE species from human caudate nucleus and human erythrocytes, but did not cross-react with antibodies raised against human serum cholinesterase. The remaining activity was solubilized under low-ionic-strength conditions in the presence of 1.0% Triton X-100. The purified tetrameric, DS-AChE sedimented at 10.0 S as detergent-protein mixed micelle and on extensive removal of the detergent this enzyme formed defined aggregates by self-micellarization. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions revealed that the salt-soluble and detergent-soluble tetrameric enzyme species both contained a heavy and a light dimer; under reducing conditions mainly one band corresponding to the light subunit was seen. Molecular weights of 300,000 dalton and 280,000 dalton were calculated for SS-AChE and DS-AChE, respectively. Limited digestion of DS-AChE with proteinase K led to isolation of an enzyme that no longer bound detergents and lacked the intersubunit disulfide bridges.  相似文献   

5.
Both salt-soluble and detergent-soluble rat brain globular acetylcholinesterases (SS- and DS- AChE EC 3.1.1.7) are amphiphiles, as shown by detergent dependency of enzymatic activity and binding to liposomes. Proteinase K and papain treatment transformed SS-AChE and DS-AChE into forms that, in absence of detergent, no longer aggregated nor bound to liposomes. In contrast, phosphatidylinositol-specific phospholipase C had no effect on these properties. Labeling DS-AChE with 3-(trifluoromethyl)-3-(m-(125I)-iodophenyl) diazirine ([125I]TID) revealed, by polyacrylamide gel electrophoresis under reducing conditions, one single band of 69 kD apparent molecular mass. The same pattern was previously obtained with Bolton and Hunter reagent-labeled enzyme (1). Proteinase K treatment transformed the 11 S [125I]TID labeled AChE into a 4 S form which no longer showed125I-radioactivity and was unable to bind to liposomes. These results are compatible with the existence of a hydrophobic segment present both on salt-soluble and detergent-soluble 11 S AChE as well as on the minor forms 4 S and 7 S. This segment is not linked to the catalytic subunits by disulfide bounds in contrast to the 20 kD non-catalytic subunit described by Inestrosa et al. (2).Abbreviations used AChE acetylcholinesterase - SS-AChE salt-soluble AChE - DS-AChE detergent-soluble AChE - BSA bovine serum albumin - ChE serum (butyryl) cholinesterase - ConA-Sepharose concanavalin A-Sepharose 4B - DMAEBA-Sepharose dimethylaminoethylbenzoic acid-Sepharose 4B - PC-Chol-SA liposomes phosphatidylcholine-cholesterol-stearylamine liposomes - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - 125I-TID 3-(trifluoromethyl)-3-(m-(125I)-iodophenyl) diazirine  相似文献   

6.
The membrane-bound acetylcholinesterase (AChE) from the electric organ of Torpedo marmorata was solubilized by Triton X-100 or by treatment with proteinase K and purified to apparent homogeneity by affinity chromatography. Although the two forms differed only slightly in their subunit molecular weight (66,000 and 65,000 daltons, respectively), considerable differences existed between native and digested detergent-soluble AChE. The native enzyme sedimented at 6.5 S in the presence of Triton X-100 and formed aggregates in the absence of detergent. The digested enzyme sedimented at 7.5 S in the absence and in the presence of detergent. In contrast to the detergent-solubilized AChE, the proteolytically derived form neither bound detergent nor required amphiphilic molecules for the expression of catalytic activity. This led to the conclusion that limited digestion of detergent-soluble AChE results in the removal of a small hydrophobic peptide which in vivo is responsible for anchoring the protein to the lipid bilayer.  相似文献   

7.
Differences in the glycosylation of acetylcholinesterase (AChE) subunits which form the dimers of mouse erythrocyte and a suitable procedure to purify the enzyme by affinity chromatography in edrophonium-Sepharose are described. AChE was extracted ( approximately 80%) from erythrocytes with Triton X-100 and sedimentation analyses showed the existence of amphiphilic AChE dimers in the extract. The AChE dimers were converted into monomers by reducing the disulfide bond which links the enzyme subunits. Lectin interaction studies revealed that most of the dimers were bound by concanavalin A (Con A) (90-95%), Lens culinaris agglutinin (LCA) (90-95%), and wheat germ (Triticum vulgaris) agglutinin (WGA) (70-75%), and a small fraction by Ricinus communis agglutinin (RCA(120)) (25-30%). The lower level of binding of the AChE monomers with WGA (55-60%), and especially with RCA (10-15%), with respect to the dimers, reflected heterogeneity in the sugar composition of the glycans linked to each AChE subunit in dimers. Forty per cent of the amphiphilic AChE dimers lost the glycosylphosphatidylinositol (GPI) and, therefore, were converted into hydrophilic forms, by incubation with phosphatidylinositol-specific phospholipase C (PIPLC), which permitted their separation from the amphiphilic variants in octyl-Sepharose. Only the hydrophilic dimers, either isolated or mixed with the amphiphilic forms, were bound by edrophonium-Sepharose, which allowed their purification (4800-fold) with a specific activity of 7700 U/mg protein. The identification of a single protein band of 66 kDa in gel electrophoresis demonstrates that the procedure can be used for the purification of GPI-anchored AChE, providing that the attached glycolipid domain is susceptible to PIPLC.  相似文献   

8.
Each catalytic subunit in the amphiphilic dimer of human erythrocyte acetylcholinesterase (AChE) is anchored in the plasma membrane exclusively by a glycoinositol phospholipid. In contrast to erythrocyte AChEs in other mammalian species, the human enzyme is resistant to direct cleavage by phosphatidylinositol-specific phospholipase C (PtdIns-specific PLC). The resistance is due to the existence of an additional fatty acyl chain on the inositol ring which blocks the action of PtdIns-specific PLC [Roberts et al. (1988) J. Biol. Chem. 263, 18766-18775]. In this report, nondenaturing polyacrylamide gel electrophoresis was applied to permit rapid and unambiguous distinction between amphiphilic AChE, in which each catalytic subunit binds one nonionic detergent micelle, and hydrophilic AChE, which does not interact with detergent. Deacylation of human erythrocyte AChE by an alkaline treatment with hydroxylamine rendered the amphiphilic AChE susceptible to PtdIns-specific PLC with the consequent release of hydrophilic AChE. Although serum anchor-specific phospholipase D (PLD) cleaves the intact human erythrocyte AChE anchor, this treatment, as judged by nondenaturing electrophoresis, did not release hydrophilic AChE. Hydroxylamine treatment before or after PLD digestion was necessary to achieve the conversion. These observations indicate that binding of a single detergent micelle was maintained when any of the three fatty acyl or alkyl groups in the human erythrocyte AChE anchor phospholipid were retained. For proteins that can be identified following nondenaturing gel electrophoresis, these procedures provide methods both for detecting glycoinositol phospholipid anchors resistant to PtdIns-specific PLC and for indicating fatty acyl and/or alkyl chains in these anchors.  相似文献   

9.
Purification and reconstitution of the high affinity choline transporter   总被引:1,自引:0,他引:1  
The high-affinity choline transporter has been solubilized from synaptosomal membranes by various detergents. The solubilized carrier protein has been incorporated into liposomes after removal of the detergent by dialysis. Using the reconstitution of choline transport activity as an assay, the components catalyzing choline translocation were purified from the detergent extract by ion-exchange chromatography on a Mono-Q column followed by immunoaffinity chromatography. Monitoring the active fractions by sodium dodecylsulfate polyacrylamide gel electrophoresis and isoelectrofocussing gave one major protein with an apparent molecular weight of about 90,000 and an isoelectric point of pH 4.7. The isolated protein appeared to be heavily glycosylated as shown by lectin binding; upon treatment with endoglycosidase F the polypeptide was degraded to an apparent molecular weight of about 65,000. Accumulation of choline into liposomes reconstituted with the purified protein was driven by artificially imposed sodium gradients and inhibited by hemicholinium-3.  相似文献   

10.
Observations on Membranes of Mycoplasma laidlawii Strain B   总被引:3,自引:1,他引:2       下载免费PDF全文
The cytoplasmic membrane of Mycoplasma laidlawii strain B is solubilized by anionic and nonionic detergents, succinylation, phospholipase A, alkaline phosphatase, trypsin, and chymotrypsin. Cationic detergents are without effect, as are chelating agents, even in the presence of high concentrations of monovalent cation. The detergent-solubilized membrane exhibits one peak in the analytical ultracentrifuge, but the sedimentation coefficient is dependent upon concentration of detergent. Simple dialysis does not remove all of the sodium dodecylsulfate except from lipid-depleted membrane particles. Membranes bind sodium dodecylsulfate but acetone powders of membranes do not. Sulfated alcohols with chain lengths of C(14) and C(16) are more tightly bound than dodecylsulfate. A constant amount of di- and trivalent cation is bound by the membrane upon aggregation. Only a portion of this cation is removable with chelating agents. No chelating agent is bound by these aggregates. A portion of the lipid-depleted membrane particles is solubilized by negatively charged lipids and detergents, giving rise to aggregates in the presence of divalent cation. Fractionations of detergent-solubilized membranes by preparative gel electrophoresis and ammonium sulfate were inconclusive. Density gradient centrifugation of succinylated membranes yielded at least five fractions which exhibited homogeneity by ultracentrifugation. Analytical gel electrophoresis of these fractions demonstrated heterogeneity. The composition of these five fractions suggested separation of protein from lipid.  相似文献   

11.
Abstract: According to their solubilization properties, two classes of acetyl-cholinesterases (AChE) can be detected in the adult rat brain: a "soluble" species (easily solubilized without detergent), and a membrane-bound species (solubilized only in the presence of detergent). The latter was found to be homogeneous by gel filtration (Stokes radius 8.05 ± 0.35 nm) and sucrose gradient centrifugation (9.75 ± 0.2 S) in the presence of Triton X-100. The "soluble" AChE gives three stable species in the presence of the same detergent with Stokes radii and sedimentation constants of 10.9 ± 0.5 nm and 16 ± 2 S; 6.75 ± 0.30 nm and 10.7 ± 0.4 S; 5.37 ± 0.35 nm and 4.37 ± 0.1 S. Co-chromatography and co-sedimentation or the reduction and alkylation of disulfide bridges show that all the soluble species are different from the membrane-bound AChE. The possibility that soluble and membrane-bound AChE are completely different molecules is discussed.  相似文献   

12.
Mast cells and related cells have on their surface receptors that bind immunoglobulin E (IgE) with high affinity and which, when aggregated, trigger exocytosis. We recently demonstrated that when these receptors are solubilized with mild detergents, their subunits dissociate unless an appropriate lipid:detergent ratio is maintained. The conditions required to maintain the receptors' integrity appeared to parallel those previously determined as necessary to obtain adequate incorporation of unpurified IgE-receptor complexes from detergent extracts into liposomes. We now show that purified IgE-receptor complexes having the full complement of subunits become preferentially inserted into liposomes. If the receptor subunits are chemically cross-linked to each other, at least some of such receptors can be incorporated, even though lipid is omitted during their purification. The findings suggest that the IgE-binding alpha subunit of the receptor is anchored to the bilayer by means of one or both of the other subunits.  相似文献   

13.
5'-Nucleotidase is a member of a recently identified class of membrane proteins that is anchored via a phosphatidylinositol-containing glycolipid. The enzyme was readily solubilized with full retention of catalytic activity by nonionic and anionic detergents such as alkylthioglucosides, deoxycholate, and 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane-sulfonate (CHAPS), while the cationic detergent dodecyltrimethylammonium bromide (DTAB) caused loss of activity. 5'-Nucleotidase was released only at high detergent concentrations, suggesting that it is tightly associated with the membrane. DTAB and deoxycholate caused a loss of heat stability, while alkylthioglucosides had no effect. CHAPS produced a remarkable increase in the heat stability of the partially purified (glycoprotein fraction) and purified enzyme. Arrhenius plots of solubilized 5'-nucleotidase showed "break points" for all detergents in the temperature range 30-37 degrees C. SDS-PAGE of pure 5'-nucleotidase showed a single subunit of molecular mass 70 kilodaltons (kDa), while sucrose density gradient sedimentation gave a peak of activity corresponding to 132 kDa, indicating that the enzyme exists as a dimer. Gel filtration of the solubilized enzyme in several detergents showed apparent molecular masses between 200-630 kDa, suggesting that lymphocyte 5'-nucleotidase may be present in high molecular mass aggregates in its native state.  相似文献   

14.
Boar sperm membranes are rather resistent to the solubilizing effect of some detergents. Deoxycholate, an ionic detergent, was efficient in solubilizing sperm proteins but some nonionic detergents like Triton X-100 displayed relatively poor capacity in rendering membrane proteins soluble. This may be due to sperm proteins being attached to submembraneous structures through bonds involving divalent cations, since mixtures of Triton X-100 and ethylenediamine tetraacetic acid (EDTA) were almost as efficient as deoxycholate in solubilizing membrane proteins. Since intact spermatozoa were directly treated with detergents the solubilized proteins comprised a mixture of intracellular and membrane components. To enrich for membrane proteins, affinity chromatography on columns containing different lectins was carried out. SDS polyacryiamide gel electrophoresis of sperm glycoproteins desorbed from the various lectin columns demonstrated that each lectin bound a unique set of components although most glycoproteins were recovered from two or more columns. Columns containing Lens culinaris hemagglutinin yielded more sperm glycoproteins than any of the other lectin columns examined. The predominant amount of the sperm proteins recovered from the Lens culinaris lectin column was membrane derived, as the majority of the proteins were integrated into liposomes. It is concluded that sperm membrane proteins are efficiently solubilized by detergent in the presence of a chelator and that most of the membrane glycoproteins can easily be enriched by affinity chromatography on a lectin column. Proteins obtained in this way should serve as excellent starting material for the isolation of individual sperm membrane proteins.  相似文献   

15.
1. In a recent study, we distinguished two classes of amphiphilic AChE3 dimers in Torpedo tissues: class I corresponds to glycolipid-anchored dimers and class II molecules are characterized by their lack of sensitivity to PI-PLC and PI-PLD, relatively small shift in sedimentation with detergent, and absence of aggregation without detergent. 2. In the present report, we analyze the amphiphlic or nonamphiphilic properties of globular AChE forms in T28 murine neural cells, rabbit muscle, and chicken muscle. The molecular forms were identified by sucrose gradient sedimentation in the presence and absence of detergent and analyzed by nondenaturing charge-shift electrophoresis. Some amphiphilic forms showed an abnormal electrophoretic migration in the absence of detergent, because of the retention of detergent micelles. 3. We show that the amphiphilic monomers (G1a) from these tissues, as well as the amphiphilic dimers (G2a) from chicken muscle, resemble the class II dimers of Torpedo AChE. We cannot exclude that these molecules possess a glycolipidic anchor but suggest that their hydrophobic domain may be of a different nature. We discuss their relationship with other cholinesterase molecular forms.  相似文献   

16.
Abstract: Acetylcholinesterase (AChE) is secreted from muscle and nerve cells and associates as multimers through intermolecular covalent and noncovalent bonds. The amino acid sequence of the C-terminus is thought to play an important role in these interactions. We generated mutants in the C-terminus of the catalytic T-subunit of chicken AChE to determine the importance of this region to oligomerization and to the amphipathic character of the protein. Wild-type recombinant chicken AChE secreted from human embryonic kidney 293 cells was assembled into dimers and tetramers exclusively. Mutants lacking the C-terminal Cys764, the only cysteine involved in interchain disulfide bonds, showed lower but significant levels of the secreted dimeric and tetrameric forms. A truncated mutant, lacking the C-terminal 39 amino acids, exhibited a severe decrease in content of the multimeric forms, yet small amounts of the dimer were detectable. The amphipathic character was dependent on the state of oligomerization. When analyzed by sucrose gradients, the sedimentation of tetramers was not affected by detergent, but monomers and dimers sedimented more slowly in the presence of detergent. Most of the recombinant wild-type enzyme, shown to be dimeric and tetrameric by sedimentation analysis, was monomeric when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, indicating that much of the secreted oligomeric AChE was not disulfide bonded. These data suggest that disulfide bonding of Cys764 is not required for the catalytic subunit of chicken AChE to form oligomers and that regions outside of the C-terminus contribute to the hydrophobic interactions that are important for stabilizing the oligomeric forms.  相似文献   

17.
Abstract— We have solubilized two active molecular forms of AChE from rat brain and compared them to the molecular forms solubilized from rat muscle. One of these forms, in muscle, as well as in brain, is easy to solubilize without detergent (ES form–apparent sedimentation coefficient without detergent: 4.6s); the other is hard to solubilize and we obtained a nearly total solubilization only in the presence of detergent (HS form–apparent sedimentation coefficient in presence of detergent: 10.3s). These two molecular forms are glycoprotein in nature. They interact with detergent (Triton X-100), as demonstrated by a comparison of their hydrodynamic parameters (determined by sucrose gradient centrifugation and molecular filtration) in the presence and absence of detergent. In the absence of detergent, their molecular weights are 115,000 for the ES form and 435,000 for the HS form. We did not find the molecular form in brain which seems to be specific to the muscle endplate region. at any stage of its development (EP form–solubilized by detergent–apparent s value in presence of detergent: 16.2s).
During development or maturation of the rat brain, the relative proportion of the HS form to the ES form increases; its absolute amount also increases (by more than a factor of 7 during the first month after birth). The ES form seems to be established at its adult level at the time of birth, before the large increase in the HS form. The proportion of each form in the adult rat brain remains constant: 90% of the total activity is represented by the HS form.  相似文献   

18.
Abstract

To investigate if G-protein-receptor interactions can be characterized using sucrose density gradients (SDG) we have determined the experimental conditions for muscarinic acetylcholine receptor (mAChR) solubilization and analysis on SDG. Solubilization of 65–80% of [3H]QNB bound mAChR was accomplished with 1% of detergent. Analysis of solubilized receptors on SDG containing 0.4M KCl and 0.1% detergent demonstrated that the physical properties of the receptor-detergent complexes are influenced by the solubilizing detergent as well as detergents included in the SDG. Neither GTPγS nor NaF and AlCl3 altered the sedimentation properties of mAChR, suggesting that the solubilized mAChR is no longer associated with G-protein under these conditions. Receptors bound to [3H]oxotremorine and [3H]QNB had similar sedimentation properties, suggesting that, once solubilized, mAChRs do not remain associated with G-proteins. Covalent labeling with [3H]PrBCM followed by solubilization and analysis on SDS-gel electrophoresis demonstrated the presence of intact receptor molecule. These observations suggest that the changes in the sedimentation properties of detergent-receptor complexes are independent of G-protein interactions and are influenced by the nature of the detergent associated with the mAChR during analysis.  相似文献   

19.
The solubilization of plasma membrane fractions FI and FII associated protein kinases has been attempted using monovalent salts of high ionic strength and various detergent treatments. Extraction of FI and FII plasma membranes with high ionic strength salt solutions did not release more than 20% of the protein kinase activity. Similarly, monovalent salts released little adenosine 3':5'-monophosphate (cyclic AMP) binding activity, but after extraction binding capacity of cyclic [3H]AMP to plasma membranes was increased about 150-200%. Triton X-100 was a better solubilizing agent that Lubrol WX or deoxycholate. In addition to solubilization, 0.1% Triton X-100 also stimulated the protein kinase activity 150-200%. The properties of Triton X-100 solubilized FI and FII and purified cytosol KII were characterized with respect to protein substrate specificity, effect of cyclic AMP, cyclic nucleotide specificity, effects of divalent metal ion and gonadotropins. Upon sucrose density gradient centrifugation, FI solubilized protein kinase and cyclic AMP binding activities co-sedimented with a sedimentation coefficient of 6.3 S. The FII solubilized protein kinase sedimented as two components with sedimentation coefficients of 7.7 S and 5.5 S. The cyclic AMP binding activity also sedimented as two components with sedimentation coefficient 6.7 S and 5.5 S. Cyclic AMP caused dissociation of solubilized protein kinase from FI into a single catalytic (4.8 S) and two cyclic AMP binding subunits (8.1 S and 6.7 S). FII solubilized enzyme was dissociated into one catalytic (4.8 S) and one cyclic AMP binding subunit (6.3 S). Fractionation of FI and FII solubilized enzymes on DEAE-cellulose column chromatography resolved them each into two peaks Ia, Ib and IIa, IIb, respectively. Peaks Ib and IIb were more sensitive to cyclic AMP STIMULATION THAN Ia and IIa peaks. From these studies it is concluded that the plasma-membrane associated and cytosol protein kinases have similar catalytic properties but differ in some of their physical properties.  相似文献   

20.
Abstract: Different forms of acetylcholinesterase (AChE), EC 3.1.1.7, were demonstrated in human brain caudate nucleus. One form was solubilized at high ionic strength, the other with Triton X-100. The detergent-extractable form was purified to homogeneity by affinity chromatography. This form of AChE is amphiphile-dependent; i.e., it was active only in the presence of amphiphiles (detergents or lipids). Further, the enzyme was shown to bind detergents and to interact hydrophobically with Phenyl-Sepharose. In the presence of detergents the enzyme is a tetramer (subunit molecular weight, 78,000) which aggregates on the removal of detergents. Human brain AChE showed a reaction of identity with human erythrocyte AChE in crossed-line immunoelectrophoresis. The high-salt-soluble brain enzyme did not cross-react with the erythrocyte enzyme. The two classes of AChE seem not to be related, as they show no common antigenic determinant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号