首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J G Bannigan 《Teratology》1985,32(2):229-239
The effects of 500 and 300 mg/kg bromodeoxyuridine (BUdR) on the process of fusion of the neural folds were tested after injection into pregnant mice on day 8 of gestation (192 hours postcoitum). Various doses of the natural nucleoside, thymidine (TdR), were also tested. Both doses of BUdR retarded growth to the same extent, but only the larger dose caused neural tube defects in 28.8% of embryos. Treatment with the larger dose also caused extensive cell necrosis to appear in the neuroepithelium of the neural folds between 12 and 15 hours after treatment. No changes were detectable with the light microscope up to this time. Measurement of the cell generation time in treated and control embryos indicated that the BUdR prolonged the cycle by about 2 hours and that the dying cells were in the second DNA synthetic phase following incorporation of the analog. Treatment with the smaller dose of BUdR caused minimal cell necrosis. This was taken as evidence for the importance of cell necrosis in the pathogenesis of BUdR-induced neural tube defects. Treatment with excess TdR did not cause either neural tube defects or cell necrosis, and a dose of TdR equimolar with the large dose of BUdR (400 mg/kg TdR) did not retard growth. Doses of 800 and 1,200 mg/kg TdR retarded growth to the same extent as BUdR. The administration of an equimolar amount of TdR, along with the teratogenic dose of BUdR, prevented the occurrence of cell necrosis and neural tube defects. When treatments were given on day 9 of gestation, 500 mg/kg BUdR caused cell necrosis in the neuroepithelium about 15 hours after treatment but no neural tube defects were produced by day 9 after treatment. It is suggested that in this case cell necrosis occurred too late to interfere with neural fold fusion. It was concluded that the ability of BUdR to cause exencephaly in mouse embryos was due to cell necrosis in the neuroepithelium.  相似文献   

2.
Teratogenicity and developmental toxicity of valproic acid in rats   总被引:2,自引:0,他引:2  
C V Vorhees 《Teratology》1987,35(2):195-202
The teratogenicity and developmental toxicity of valproic acid (VPA) was investigated in Sprague-Dawley CD rats at doses of 0, 150, 200, 300, 400, and 600 mg/kg administered by gavage on days 7-18 of gestation. The VPA-600 dose was maternally toxic, causing death in two of four dams. This dose produced 100% embryonic resorption. The VPA-400 dose was maternally toxic in as much as maternal weight gain was reduced, but no deaths occurred. At this dose five of fifteen litters were completely resorbed, and 52% of all embryos were resorbed. Among survivors, 49% were malformed (68% having skeletal defects and 41% visceral defects). Fetal weight was reduced by 43% in this group. Most of the defects were ectrodactyly, hydronephrosis, cardiovascular defects, hypoplastic bladder, rib and vertebral defects, and other defects of the limbs and tail. The VPA-300 dose (nine litters) produced fewer defects, larger fetuses, and no increase in resorptions. The defects at this dose were primarily cariovascular, rib, and vertebral. The VPA-200 dose (12 litters) produced no reduction in fetal weight, no increase in resorptions, and few defects. The defects noted were hydronephrosis, cardiovascular abnormalities, and rib defects, primarily wavy ribs. Additional litters were prepared using doses of 150 and 200 mg/kg and were allowed to deliver and grow until 70 days. These doses produced no reduction in maternal weight gain, no reduction in litter size, birth weight, or sex ratio of the offspring. These doses produced no reduction in offspring weight to day 70, no increase in mortality, and only rare cases (two offspring of each dose) of tail defects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The aim of this study was to explore the direct embryonic teratogenicity of vinyl chloride monomer (VCM), especially the toxic effects on the early development of the nervous system and its underlying mechanisms. Pregnant mice at embryonic day 6.5 (E6.5) were injected with different doses of VCM (200, 400 and 600 mg/kg) and embryos were harvested at E10.5. Our results showed that doses higher than 400 mg/kg of VCM increased the incidence of malformed embryos, especially the neural tube defects (NTDs). In addition, high-dose of VCM decreased mitotic figure counts in the neuroepithelium and enhanced the percentage of cells in G0/G1 phase, while they were reduced in S phase. The more VCM was injected into mice, the fewer positive PCNA cells were seen and the more positive TUNEL cells were observed in the neuroepithelium. Moreover, significant increases in the levels of caspase-3 protein were observed in NTD embryos. Our results demonstrate that during early pregnancy, exposure to doses higher than 400 mg/kg of VCM increases the incidence of malformations and particularly the rate of NTDs. High-dose of VCM inhibits the proliferation of neural cells and induces cell apoptosis, leading to an imbalance in the ratio of proliferation and apoptosis. Meanwhile, the apoptosis of neuroepithelial cells might be accelerated by the activation of the caspase-3 pathway, and it might be a reason for NTDs.  相似文献   

4.
The effect of a single teratogenic dose of the antiepileptic drug valproic acid and its nonteratogenic metabolite, 2-en-valproic acid, on zinc concentrations in mouse plasma, embryo, and decidua on d 9 of gestation was investigated. The substances were injected subcutaneously (sc) as their sodium salts. In this mouse model, valproic acid induced between 20% (400 mg/kg dose) and 60% (600 mg/kg dose) incidence of exencephaly in living fetuses; 2-en-valproic acid was not teratogenic at these dose levels. The zinc concentrations in plasma were significantly increased 1 and 2 h after administration of both substances. The embryonic zinc concentrations were increased 2 and 4 h after application of both substances. The concentrations of zinc in the decidua were not affected. The similarity of effects of valproic acid and its nonteratogenic analog on zinc concentrations in maternal plasma and embryo suggests that the teratogenicity of a single administration of valproic acid in the mouse is not owing to interference with the zinc metabolism in this species.  相似文献   

5.
All-trans-retinoic acid (RA) in olive oil was given in doses of 0, 40, or 60 mg/kg of body weight to pregnant mice on day 8 of gestation, and 2-6 hr later embryos were fixed in solutions with or without cetylpyridinium chloride (CPC). The neuroepithelium of the presumptive midbrain was processed for light and electron microscopy. Distorted contours of the neuroepithelium were induced by both doses of RA and the incidence and the severity of the disorganized neuroepithelium showed dose-related results. Abnormal neuroepithelium showed wide intercellular spaces with degenerated cytoplasmic processes or cell debris, separation of the apical side from adjacent cells, retention of mitotic and/or postmitotic cells on the apical side, presence of mitotic cells on the basal side, and detachment of degenerated structures from the neuroepithelium. Ultrastructurally, the affected neuroepithelium showed (1) appearance of degenerating filamentous or tubular coagulating bundles in the cytoplasm and the cytoplasmic process of the neural crest cells, (2) dispersal of polysomes into monosomes especially in the degenerating neural crest cells, (3) and a collecting of microfilament-like structures at the contact area between the neural crest cell and the presumptive neuroblast. These morphological changes suggest that RA affects the nature of cytoskeletal elements and the protein synthesis of the neuroepithelial cells. The selective susceptibility of neural crest cells to RA causes more degenerating neural crest cells in the neuroepithelium, which causes nonapproximation of the neural folds and scantiness of the migrating neural crest cells; these results lead to neural tube defects and craniofacial anomalies, respectively.  相似文献   

6.
Di-n-butyl phthalate (DBP) has been linked to the neural, reproductive and developmental toxicity. We present here a metabolomic study that characterized the metabolic variations associated with the DBP-induced teratogenesis in maternal and fetal mice. DBP at 50 and 300?mg/kg were administrated to pregnant C57 mice, via gastric intubation on gestation day 7?C9, respectively. Maternal mice were euthanized on gestation day 16 and examined for fetal development and malformations. Metabolomic study of maternal serum, placenta and fetal brain tissues was performed using gas chromatography time-of-flight mass spectrometry combined with multivariate data analysis (MVDA). The results showed that a 50?mg/kg dose of DBP had no significant effect on fetal development and a 300?mg/kg dose caused embryo resorption and fetal malformations (primarily eye abnormalities and encephalocele). MVDA indicated that DBP at two doses gave rise to disruption of maternal and fetal metabolic profiles characterized by significantly altered tricarboxylic acid cycle, amino acid, purine and lipid metabolism.  相似文献   

7.
Effect of hydroxyurea on neural tube defects in the curly-tail mouse   总被引:1,自引:0,他引:1  
Around 60% of curly-tail mice spontaneously develop neural tube defects (NTD), that is, exencephaly, and/or spina bifida (open lesions), or a curly tail (closed lesion), due to an incompletely penetrant recessive gene. Various doses of hydroxyurea, a teratogen to the rodent central nervous system, were administered to curly-tail mice on either day 8 or day 9 of pregnancy in an attempt to increase the number of NTD in the embryos. No dose used on either day achieved this. However, on day 8, the proportion of affected mice with open lesions increased from around 30% in control mice to 78% with 400 mg/kg hydroxyurea, and this was accounted for specifically by the production of exencephaly. When administered on day 9, 400, 500, and 600 mg/kg hydroxyurea (the latter two doses being lethal to embryos on day 8) actually reduced the incidence of total NTD, to around 30%. Among these affected mice, even though reduced in number, there was still a slight tendency for an increase in the number of exencephalics. Hydroxyurea also produced gastroschisis in a small percentage of embryos; the greatest incidence was 36% with 400 mg/kg on day 8.  相似文献   

8.
The teratogenic effects of valproic acid and its 4-propyl-4-pentenoic acid (4-en) metabolite were investigated in three inbred mouse strains that were known to possess differing sensitivity to heat-induced neural tube defects. In the heat-resistant DBA/2J strain, administration of either valproic acid or the metabolite during the critical period of neural tube development failed to produce any abnormal offspring. Similar treatment in the moderately heat-sensitive LM/Bc strain resulted in up to 19.8% exencephalic fetuses. The highly heat-sensitive SWV strain was also very susceptible to the induction of neural tube defects by either valproic acid or its 4-en metabolite. When administered on gestational day 8 plus 12 hours, the parent compound produced 35% exencephalic fetuses, while the metabolite had a response frequency of 32.4%. Thus, the hierarchy of susceptibility for the induction of neural tube defects in these inbred mouse strains was exactly the same whether the teratogen was a physical agent such as hyperthermia or a chemical compound such as valproic acid. If such diverse agents as these should interact to produce malformations, then it is possible that a wide variety of other agents might interact in a similar manner to produce neural tube defects.  相似文献   

9.
Mao GE  Collins MD 《Teratology》2002,66(6):331-343
BACKGROUND: Previous studies observed that retinoic acid receptor-gamma (RARgamma) is expressed in the open caudal neuroepithelium but that RARbeta is expressed in the closed neural tube. Furthermore, retinoic acid (RA) induces RARbeta expression, a molecular event associated with neural tube closure, but treatment with RA at the appropriate gestation time causes failure of neural tube closure. Since there are four isoforms of RARbeta, perhaps the isoforms expressed in the closed neural tube and induced by RA are different. To investigate the hypothesis that the switch from RARgamma to RARbeta is mechanistically linked to neural tube closure, this study determined the concentrations and distributions of RARbeta and RARgamma isoforms in mouse embryos with RA-induced neural tube defects and in splotch (Sp) mutant embryos with spina bifida. METHODS: Absolute concentrations of RARbeta and RARgamma isoforms were determined throughout primary neurulation (gestational day 8.5-10.0) in treated or untreated C57BL/6J mouse whole embryos by ribonuclease protection analysis. Treatment consisted of an oral dose of 100 mg/kg of all-trans-RA on gestational day 8.5. Spatial distributions of RARbeta and RARgamma were examined in RA-treated and Sp mutant embryos by in situ hybridization. RESULTS: RARbeta2, gamma1, and gamma2 were expressed in untreated embryos and were induced 4.5-, 1.6-, and 4.0-fold, respectively, 4 hr after treatment with RA. In embryos with RA-induced spina bifida, RARbeta2 was expressed in the closed neural tube while RARgamma1 and RARgamma2 were expressed in the open caudal neuroepithelium. In splotch mice with spina bifida, the boundary between RARbeta and RARgamma did not correspond to the site of neural tube closure. CONCLUSIONS: In RA-treated embryos, the relationship between RARbeta expression in the closed and RARgamma in the open caudal neuroepithelium was not altered. However, in splotch embryos with spina bifida, the juncture between RARbeta and RARgamma expression remained in the same anatomical position in the neuroepithelium irrespective of the neural tube closure status and suggests that the switch from RARgamma to RARbeta expression in the closing caudal neuroepithelium may not be causally linked to neural tube closure in the splotch mutant.  相似文献   

10.
The teratogenicity of trans-2-ene-valproic acid (300 and 400 mg/kg) was compared with that of valproic acid (VPA; 300 mg/kg) and controls (corn oil) administered by gavage to Sprague-Dawley CD rats on embryonic (E) days 7-18. At the 300 mg/kg dose, trans-2-ene-VPA produced no change in maternal weight, number of implantations, proportion of resorptions, proportion of malformations, or fetal weight. By contrast, the same dose of VPA (300 mg/kg) reduced maternal weight during gestation, increased malformations (12.0% vs. 0.7% in controls), and reduced fetal body weight by 25.1%. An even higher dose of trans-2-ene-VPA (400 mg/kg) produced a reduction in maternal body weight during treatment and reduced fetal body weight (by 7.9%), but did not increase resorptions or malformations in the fetuses. On day E18, maternal serum drug concentrations of VPA were higher in the VPA-treated group compared with those of trans-2-ene-VPA in the trans-2-ene-VPA-treated groups at 1 hr posttreatment. At 6 hr posttreatment the reverse was seen. trans-2-ene-VPA may be absorbed more rapidly and distributed differently than VPA. Overall, the data support the view that trans-2-ene-VPA at equal or higher doses than VPA is not teratogenic in rats.  相似文献   

11.
Numerous studies have suggested that single-day intraperitoneal (IP) injection of inorganic arsenic results in failure of neural tube closure and other malformations in rats, hamsters, and mice. Most of these studies involved treatment of limited numbers of animals with maternally toxic doses of arsenic (generally As(V)), without defining a dose-response relationship. In the present Good Laboratory Practice-compliant study, sodium arsenate (As(V)) was administered IP and arsenic trioxide (As(III)) was administered either IP or orally (by gavage) on gestational day 9 to groups of 25 mated Crl:CD(R)(SD)BR rats. Only at dose levels that caused severe maternal toxicity, including lethality, did IP injection of arsenic trioxide produce neural tube and ocular defects; oral administration of higher doses of arsenic trioxide caused some maternal deaths but no treatment-related fetal malformations. In contrast, IP injection of similar amounts of sodium arsenate (based on the molar amount of arsenic) caused mild maternal toxicity but a large increase in malformations, including neural tube, eye, and jaw defects. In summary, neural tube and craniofacial defects were observed after IP injection of both As(V) and As(III); however, no increase in malformations was seen following oral administration of As(III), even at maternally lethal doses. These results demonstrate that the frequently cited association between prenatal exposure to inorganic arsenic and malformations in laboratory animals is dependent on a route of administration that is not appropriate for human risk assessment.  相似文献   

12.
BACKGROUND: The antiepileptic drug valproic acid (VPA) is well known to cause neural tube and skeletal defects in both humans and animals. The amidic VPA analogues valpromide (VPD) and valnoctamide (VCD) have much lower teratogenicity than VPA inducing exencephaly in mice. The objective of this study was to investigate the teratogenic effects of VPA, VPD, and VCD on the skeleton of NMRI mice. METHODS: Pregnant NMRI mice were given a single subcutaneous injection of VPA (400 and 800 mg/kg), VPD (800 mg/kg), or VCD (800 mg/kg) on the morning of gestation day (GD) 8. Cesarean section was carried out on GD 18. Live fetuses were double‐stained for bone and cartilage and their skeletons were examined. RESULTS: Significant increases in fetal loss and exencephaly rate were observed with VPA at 800 mg/kg compared to the vehicle control. There were no significant differences between either VPD or VCD and the control groups for any parameter at cesarean section. A number of abnormalities were dose‐dependently induced at high incidences by VPA in both the cartilage and bone of vertebrae, ribs and sternum. In contrast, lower frequencies of abnormality were exhibited with VPD and VCD than VPA in all skeletons affected by VPA. CONCLUSIONS: These findings clearly indicate that VPD and VCD are distinctly less teratogenic than VPA in the induction of not only neural tube defects, but also skeletal abnormalities. A structure‐teratogenicity relationship of VPA on the skeleton is suspected. Birth Defects Res B 71:47–53, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

13.
Megalin is a low-density lipoprotein receptor-related protein (LRP2) expressed in the neuroepithelium and the yolk sac of the early embryo. Absence of megalin expression in knockout mice results in holoprosencephaly, indicating an essential yet unidentified function in forebrain development. We used mice with complete or conditional megalin gene inactivation in the embryo to demonstrate that expression of megalin in the neuroepithelium but not in the yolk sac is crucial for brain development. During early forebrain development, megalin deficiency leads to an increase in bone morphogenic protein (Bmp) 4 expression and signaling in the rostral dorsal neuroepithelium, and a subsequent loss of sonic hedgehog (Shh) expression in the ventral forebrain. As a consequence of absent SHH activity, ventrally derived oligodendroglial and interneuronal cell populations are lost in the forebrain of megalin-/- embryos. Similar defects are seen in models with enhanced signaling through BMPs, central regulators of neural tube patterning. Because megalin mediates endocytic uptake and degradation of BMP4, these findings indicate a role for megalin in neural tube specification, possibly by acting as BMP4 clearance receptor in the neuroepithelium.  相似文献   

14.
Valproic acid-induced spina bifida: a mouse model.   总被引:9,自引:0,他引:9  
K Ehlers  H Stürje  H J Merker  H Nau 《Teratology》1992,45(2):145-154
Prenatal exposure to the antiepileptic drug valproic acid (VPA) has been associated with the formation of spina bifida aperta, meningocele, and meningomyelocele in the human. Until now, a direct relationship between VPA application and spina bifida has not been experimentally demonstrated. VPA was known only to induce exencephaly in mice, a defect of the anterior neural tube. Maximal sensitivity toward production of this defect was on day 8 of gestation (plug day = day 0). The closure of the posterior neuropore occurs later in the development of mice than the closure of the anterior neuropore. To investigate whether there is a direct relationship between VPA application during pregnancy and induction of spina bifida in mice, we administered various doses of the drug on day 9 of gestation, at three time intervals (at 0, 6, and 12 hr). This administration of VPA produced spina bifida aperta and spina bifida occulta in mice. High doses of VPA (3 x 450 and 3 x 500 mg/kg) induced a low rate of spina bifida aperta in the lumbosacral region. High incidences of spina bifida occulta, a less serious form of spina bifida, were induced with lower doses. This malformation was demonstrated in double-stained fetal skeletons by measurements of the distance between the cartilaginous ends of each vertebral arch. The occurrence of this defect and its localization was dose-dependent. The lumbar region was affected by all doses investigated (3 x 300, 3 x 350, 3 x 400, 3 x 450, and 3 x 500 mg/kg). The sacral/coccygeal region was affected additionally, but with higher doses (3 x 400, 3 x 450, and 3 x 500 mg/kg). A comparison of the results obtained with day 16 and 17 control fetuses showed that the pattern of gaps present in the lumbar and sacral region of the spinal cord in treated groups was drug-specific and not related to a developmental delay. Our results indicate that multiple administrations of VPA on day 9 of gestation in mice result in a low incidence of spina bifida aperta and a high incidence of spina bifida occulta, and provides a relevant model for the study of human spina bifida defects.  相似文献   

15.
Valproic acid in 100, 200 and 400 mg/kg doses produced a significant dose dependent decrease in exploratory behaviour, tested as number of head dips on the hole board. In the open field test, control mice entered less number of peripheral squares and more number of central squares on day 4 as compared to day 1 of the test. In the lower doses (100 and 200 mg/kg) valproic acid increased central square entries on day 1 with significant decrease by all doses on subsequent days indicating inhibition of exploratory behaviour. However, in peripheral square entry they followed the same pattern as control mice. Neither carbamazepine (10 and 20 mg/kg) nor ethosuccimide (100 and 200 mg/kg) affected exploratory behaviour in either the hole board or open field test.  相似文献   

16.
M Trotz  C Wegner  H Nau 《Life sciences》1987,41(1):103-110
Neural tube defects were induced dose-dependently by single injections of the anticonvulsant drug valproic acid (VPA) as sodium salt in mice on gestational day 8. Folinic acid (5-CHO-THF) coadministration by i.p. injection or by a constant rate infusion via osmotic minipumps, implanted s.c., significantly reduced the exencephaly rates using a randomized double-blind experimental procedure. 5-CHO-THF supplementation cut the exencephaly rates into half even at high maternal plasma levels of VPA (p less than 0.005, chi 2-test); resorption rates were not affected. The VPA plasma kinetics were not changed by any of the application regimens of 5-CHO-THF. The investigation of the folate metabolite pattern (determined by HPLC) showed that 5-CHO-THF and 5-methyl-tetrahydrofolic acid (5-CH3-THF) were the main metabolites in untreated mice. After supplementation with 5-CHO-THF, only the concentrations of this folate vitamer were increased in the plasma from 0.3 microgram/ml (normal) to 0.6 or 1.9 micrograms/ml (after injection of 3 x 1 mg/kg or 3 X 4 mg/kg) and to 4.2 micrograms/ml (after infusion via osmotic minipumps). Our results indicate that VPA-induced exencephaly in mice combined with the investigation of the plasma levels of VPA and the different folate metabolites could be an appropriate animal model to study protective effects of folates on the occurrence of neural tube defects.  相似文献   

17.
The present study was undertaken to examine the role of heat shock response in the development of tolerance and cross-tolerance in an in vivo murine model of teratogen-induced neural tube defects. The experimental paradigm designed to address this question was to utilize inbred mouse strains that differed in their sensitivity to hyperthermia and valproic acid induced neural tube defects, subjecting the dams to subteratogenic pretreatments with either heat or valproic acid at two different timepoints during development prior to the administration of the teratogenic insult. A statistically significant reduction in the frequency of neural tube defects and/or embryolethality following a pretreatment in dams subsequently exposed to a teratogenic treatment was considered evidence for the induction of tolerance. This was observed in the SWV embryos exposed to the 38°C pretreatment at 8:06 and to embryos exposed to either pretreatment temperature at 8:10 priorto a teratogenic heat shock at 8:12. In the LM/Bc embryos, only the 41°C pretreatment at 8:06 induced thermotolerance. There was no evidence of tolerance induced in either mouse strain using valproic acid. On the other hand, cross-tolerance was clearly demonstrated in this study, with a low temperature (41°C) pretreatment successfully protecting SWV fetuses from a subsequent teratogenic treatment with valproic acid, while valproic acid (200 mg/kg) was effective in reducing the risk of hyperthermia-induced neural tube defects in the LM/Bc fetuses. In all instances, tolerance was induced in the absence of significant induction of hsp synthesis. The lack ofconcordance between hsps and thermotolerance suggests that some other factor(s) is involved in conferring thermotolerance on developing murine embryos. © 1993 Wiley-Liss, Inc.  相似文献   

18.
目的:通过二氢叶酸还原酶(DHFR)竞争性抑制剂甲氨蝶呤(MTX)建立叶酸缺乏的神经管畸形(NTDs)动物模型。方法:本研究用孕7.5天C57BL/6J小鼠,采用腹腔注射(ip)不同剂量的MTX建立叶酸代谢障碍的小鼠NTDs模型,LC/MS/MS及酶学方法检测胚胎组织中叶酸相关代谢产物水平及DHFR活性。结果:最佳的致畸剂量为,MTX 4.5 mg/kg,其NTDs发生率最高为31.4%。畸形的胎鼠表型多数为后脑泡未闭,且其身长(4.21±0.76),体重(9.49±3.48)均明显低于对照组(6.32±0.56;22.76±3.23)(P0.05;P0.05)。MTX实验组的胚胎组织中DHFR的活性较对照组显著降低(P0.05),5-MeTHF和5-FoTHF的浓度和对照组相比也明显降低(P0.05)。结论:本研究成功的建立了叶酸缺乏的神经管畸形动物模型。  相似文献   

19.
To investigate the teratogenic effect of acute alcohol exposure, pregnant C57BL/6J mice were exposed to 25% ethanol (either two doses of 2.9g/kg or one dose 5.8g/kg) during the organogenic period either by intraperitoneal injections or by intubation. The incidence of malformations varied according to (1) the stage of embryonic development at the time of exposure, (2) the route of administration of the alcohol, and (3) the amount of alcohol given and the time period over which it was administered. Oral doses of alcohol were teratogenic although less so than the same dose given intraperitoneally, and two intraperitoneal doses four hours apart produced significantly more malformation than the same two doses six hours apart. The primary metabolite of alcohol, acetaldehyde, was also investigated for its teratogenicity. It was found that one or two doses of four percent acetaldehyde (0.32g/kg), administered intraperitoneally were teratogenic. A further attempt was made to raise blood acetaldehyde levels by exposing mice to disulfiram, an inhibitor of acetaldehyde dehydrogenase, prior to administration of alcohol. The disulfiram pretreatment did not increase the malformation rate. Treatment with alcohol on day 7 or 8 caused a variety of facial abnormalities, some of which were comparable to those seen in children with fetal alcohol syndrome. Exposure on day 9 or 10 resulted in limb defects. The results suggest that one or more episodes of heavy maternal drinking at critical periods in pregnancy may severely damage the embryo and may produce many features of the fetal alcohol syndrome.  相似文献   

20.
Retinoic acid is a natural vitamin A derivative that undergoes oxidative metabolism in the body to yield several metabolites, which apparently represent the products of a detoxification pathway. To assess if such metabolic conversions diminished teratogenic potency, one of the major metabolites (4-oxo-all-trans-retinoic acid) was tested for its teratogenic activity in pregnant ICR mice and further investigated for its pharmacokinetic features to determine if it accumulated in the embryo in concentrations sufficient to elicit a teratogenic response. Administration of single oral doses (10, 25, 50, or 100 mg/kg) of the compound to ICR mice on day 11 of gestation (plug day = day 0) produced dose-dependent frequencies of serious fetal anomalies of the type usually associated with the use of retinoic acid and other retinoids. The metabolite was equivalent in teratogenic potency to retinoic acid, and, in the instance of cleft palate frequency, it was even more active. Concentrations of 4-oxo-all-trans-retinoic acid and its 13-cis isomer were measured in the maternal plasma and whole embryos at 30 min to 10 hr after administration of the lowest (10 mg/kg) and the highest (100 mg/kg) teratogenic dose of 4-oxo-all-trans-retinoic acid by means of high-performance liquid chromatography methodology. Distribution of the compound in the maternal system and transfer to the embryo occurred rapidly with either dose. Peak concentration in the maternal plasma and the embryo persisted for 3-4 hr after the higher dose but not with the lower dose; however, elimination kinetics for the two dose levels were similar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号