首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using immunocytochemical methods we have studied the distribution of vinculin in the anterior and posterior latissimus dorsi skeletal (ALD and PLD, respectively) muscles of the adult chicken. The ALD muscle is made up of both tonic (85%) and twitch (15%) myofibers, and the PLD muscle is made up entirely of twitch myofibers. In indirect immunofluorescence, antivinculin antibodies stained specific regions adjacent to the sarcolemma of the ALD and PLD muscles. In the central and myotendinous regions of the ALD, staining of the tonic fibers was intense all around the fiber periphery. Staining of the twitch fibers of both ALD and PLD muscles was intense only at neuromuscular junctions and myotendinous regions. Electron microscopy revealed subsarcolemmal, electron-dense plaques associated with the membrane only in those regions where vinculin was localized by immunofluorescence. Using antivinculin antibody and protein A conjugated to colloidal gold, we found that the electron-dense subsarcolemmal densities in the tonic fibers of the ALD contain vinculin; no other structures were labeled. The basal lamina overlying the densities appeared to be connected to the sarcolemma by fine, filamentous structures, more enriched at these sites than elsewhere along the muscle fiber. Increased amounts of endomysial connective tissue were often found just outside the basal lamina near the densities. In tonic ALD muscle fibers, the subsarcolemmal densities were present preferentially over the I-bands. In partially contracted ALD muscle, subsarcolemmal densities adjacent to the Z-disk appeared to be connected to that structure by short filaments. We propose that in the ALD muscle, through their association with the extracellular matrix, the densities stabilize the muscle membrane and perhaps assist in force transmission.  相似文献   

2.
Following skeletal muscle injury, new fibers form from resident satellite cells which reestablish the fiber composition of the original muscle. We have used a cell culture system to analyze satellite cells isolated from adult chicken and quail pectoralis major (PM; a fast muscle) and anterior latissimus dorsi (ALD; a slow muscle) to determine if satellite cells isolated from fast or slow muscles produce one or several types of fibers when they form new fibers in vitro in the absence of innervation or a specific extracellular milieu. The types of fibers formed in satellite cell cultures were determined using immunoblotting and immunocytochemistry with monoclonal antibodies specific for avian fast and slow myosin heavy chain (MHC) isoforms. We found that satellite cells were of different types and that fast and slow muscles differed in the percentage of each type they contained. Primary satellite cells isolated from the PM formed only fast fibers, while up to 25% of those isolated from ALD formed fibers that were both fast and slow (fast/slow fibers), the remainder being fast only. Fast/slow fibers formed from chicken satellite cells expressed slow MHC1, while slow MHC2 predominated in fast/slow fibers formed from quail satellite cells. Prolonged primary culture did not alter the relative proportions of fast to fast/slow fibers in high density cultures of either chicken or quail satellite cells. No change in commitment was observed in fibers formed from chicken satellite cell progeny repeatedly subcultured at high density, while fibers formed from subcultured quail satellite cell progeny demonstrated increasing commitment to fast/slow fiber type formation. Quail satellite cells cloned from high density cultures formed colonies that demonstrated a similar change in commitment from fast to fast/slow, as did serially subcloned individual satellite cell progeny, indicating that the observed change from fast to fast/slow differentiation resulted from intrinsic changes within a satellite cell. Thus satellite cells freshly isolated from adult chicken and quail are committed to form fibers of at least two types, satellite cells of these two types are found in different proportions in fast and slow muscles, and repeated cell proliferation of quail satellite cell progeny may alter satellite cell progeny to increasingly form fibers of a single type.  相似文献   

3.
This study examined two putative mechanisms of new fiber formation in postnatal skeletal muscle, namely longitudinal fragmentation of existing fibers and de novo formation. The relative contributions of these two mechanisms to fiber formation in hypertrophying anterior latissimus dorsi (ALD) muscle were assessed by quantitative analysis of their nuclear populations. Muscle hypertrophy was induced by wing-weighting for 1 week. All nuclei formed during the weighting period were labeled by continuous infusion of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog, and embryonic-like fibers were identified using an antibody to ventricular-like embryonic (V-EMB) myosin. The number of BrdU-labeled and unlabeled nuclei in V-EMB-positive fibers were counted. Wing-weighting resulted in significant muscle enlargement and the appearance of many V-EMB+ fibers. The majority of V-EMB+ fibers were completely independent of mature fibers and had a nuclear density characteristics of developing fibers. Furthermore, nearly 100% of the nuclei in independent V-EMB+ fibers were labeled. These findings strongly suggest that most V-EMB+ fibers were nascent fibers formed de novo during the weighting period by satellite cell activation and fusion. Nascent fibers were found primarily in the space between fascicles where they formed a complex anastomosing network of fibers running at angles to one another. Although wing-weighting induced an increase in the number of branched fibers, there was no evidence that V-EMB+ fibers were formed by longitudinal fragmentation. The location of newly formed fibers in wing-weighted and regenerating ALD muscle was compared to determine whether satellite cells in the ALD muscle were unusual in that, if stimulated to divide, they would form fibers in the inter- and intrafascicular space. In contrast to wing-weighted muscle, nascent fibers were always found closely associated with necrotic fibers. These results suggest that wing-weighting is not simply another model of regeneration, but rather produces a unique environment which induces satellite cell migration and subsequent fiber formation in the interfascicular space. De novo fiber formation is apparently the principal mechanism for the hyperplasia reported to occur in the ALD muscle undergoing hypertrophy induced by wing-weighting.  相似文献   

4.
5.
The relative contribution of increases in fiber area to stretch-induced muscle enlargement was evaluated in the slow tonic fibers of the anterior latissimus dorsi of adult Japanese quails. A weight corresponding to 10% of the bird's body mass was attached to one wing. Thirty days of stretch in 34 birds averaged 171.8 +/- 13.5% increase in muscle mass and 23.5 +/- 0.8% increase in muscle fiber length. The volume density of noncontractile tissue increased in middle and distal regions of stretch-enlarged muscles. Mean fiber cross-sectional area increased 56.7 +/- 12.3% in the midregion of stretched muscles. Further analysis indicated slow beta-fiber hypertrophy occurred in proximal, middle, and distal regions; however, fast alpha-type fiber hypertrophy was limited to middle regions of stretched muscles. Stretched muscles had a significant increase in the frequency of slow beta-fibers that were less than 500 microns 2 in all regions and fast alpha-type fibers in middle and distal regions. Total fiber number was determined after nitric acid digestion of connective tissue in 10 birds. Fiber number increased 51.8 +/- 19.4% in stretched muscle. These results are the first to clearly show that muscle fiber proliferation contributes substantially to adult skeletal muscle stretch-induced enlargement, although we do not know whether the responses of the slow tonic anterior latissimus dorsi might be similar or different from mammalian twitch muscle.  相似文献   

6.
《The Journal of cell biology》1990,111(5):1885-1894
Myofiber growth and myofibril assembly at the myotendinous junction (MTJ) of stretch-hypertrophied rabbit skeletal muscle was studied by in situ hybridization, immunofluorescence, and electron microscopy. In situ hybridization identified higher levels of myosin heavy chain (MHC) mRNA at the MTJ of fibers stretched for 4 d. Electron microscopy at the MTJ of these lengthening fibers revealed a large cytoplasmic space devoid of myofibrils, but containing polysomes, sarcoplasmic reticulum and T-membranes, mitochondria, Golgi complexes, and nascent filament assemblies. Tallies from electron micrographs indicate that myofibril assembly in stretched fibers followed a set sequence of events. (a) In stretched fiber ends almost the entire sarcolemmal membrane was electron dense but only a portion had attached myofibrils. Vinculin, detected by immunofluorescence, was greatly increased at the MTJ membrane of stretched muscles. (b) Thin filaments were anchored to the sarcolemma at the electron dense sites. (c) Thick filaments associated with these thin filaments in an unregistered manner. (d) Z-bodies splice into thin filaments and subsequently thin and thick filaments fall into sarcomeric register. Thus, the MTJ is a site of mRNA accumulation which sets up regional protein synthesis and myofibril assembly. Stretched muscles also lengthen by the addition of myotubes at their ends. After 6 d of stretch these myotubes make up the majority of fibers at the muscle ends. Essentially all these myotubes repeat the developmental program of primary myotubes and express slow MHC. MHC mRNA distribution in myotubes is disorganized as is the distribution of their myofibrils.  相似文献   

7.
Multinucleated skeletal muscle fibers are compartmentalized with respect to the expression and organization of several intracellular and cell surface proteins including acetylcholinesterase (AChE). Mosaic muscle fibers formed from homozygous myoblasts expressing two allelic variants of AChE preferentially translate and assemble the polypeptides in the vicinity of the nucleus encoding the mRNA (Rotundo, R. L. 1990. J. Cell Biol. 110:715-719). To determine whether the locally synthesized AChE molecules are targeted to specific regions of the myotube surface, primary quail myoblasts were mixed with mononucleated cells of the mouse muscle C2/C12 cell line and allowed to fuse, forming heterospecific mosaic myotubes. Cell surface enzyme was localized by immunofluorescence using an avian AChE-specific monoclonal antibody. HOECHST 33342 was used to distinguish between quail and mouse nuclei in myotubes. Over 80% of the quail nuclei exhibited clusters of cell surface AChE in mosaic quail-mouse myotubes, whereas only 4% of the mouse nuclei had adjacent quail AChE-positive regions of membrane, all of which were located next to a quail nucleus. In contrast, membrane proteins such as Na+/K+ ATPase, which are not restricted to specific regions of the myotube surface, are free to diffuse over the entire length of the fiber. These studies indicate that the AChE molecules expressed in multinucleated muscle fibers are preferentially transported and localized to regions of surface membrane overlying the nucleus of origin. This targeting could play an important role in establishing and maintaining specialized cell surface domains such as the neuromuscular and myotendinous junctions.  相似文献   

8.
The goal of this work was to create a finite element micromechanical model of the myotendinous junction (MTJ) to examine how the structure and mechanics of the MTJ affect the local micro-scale strains experienced by muscle fibers. We validated the model through comparisons with histological longitudinal sections of muscles fixed in slack and stretched positions. The model predicted deformations of the A-bands within the fiber near the MTJ that were similar to those measured from the histological sections. We then used the model to predict the dependence of local fiber strains on activation and the mechanical properties of the endomysium. The model predicted that peak micro-scale strains increase with activation and as the compliance of the endomysium decreases. Analysis of the models revealed that, in passive stretch, local fiber strains are governed by the difference of the mechanical properties between the fibers and the endomysium. In active stretch, strain distributions are governed by the difference in cross-sectional area along the length of the tapered region of the fiber near the MTJ. The endomysium provides passive resistance that balances the active forces and prevents the tapered region of the fiber from undergoing excessive strain. These model predictions lead to the following hypotheses: (i) the increased likelihood of injury during active lengthening of muscle fibers may be due to the increase in peak strain with activation and (ii) endomysium may play a role in protecting fibers from injury by reducing the strains within the fiber at the MTJ.  相似文献   

9.
The differentiation of fiber type characteristics in the anterior (ALD) and posterior (PLD) latissimus dorsi muscles is examined by the freeze-fracture technique in 1-, 7- and 30-day-old chicks. Several characteristics of plasma membrane (caveolae, rectilinear arrays, intramembranous particles) and sarcoplasmic reticulum which show fiber type differences in the adult ALD and PLD muscles are compared in the developmental stages. The caveolar density in the ALD fibers is about 20/microns2 at 1 day increasing to about 37/microns2 at 30 days, whereas in the PLD fibers it remains at about 20/microns2 during this period. The distribution of the caveolae in the two muscles is different from the beginning; in the ALD fibers the caveolae are distributed throughout the plasma membrane and in PLD fibers they are patterned into clusters overlying the I band regions. The density of intramembranous particles of 1-day ALD and PLD plasma membranes appears similar, but by 7 days the particle counts in the sarcolemma of the ALD muscle are about twice as numerous as those in the PLD muscle. The rectilinear arrays are virtually absent in the ALD muscle, whereas in the PLD muscle their density is about 10/microns2 at 1 day and about 20/microns2 at 7 days. Already at 1 day posthatching the SR in ALD and PLD fibers has the adult configuration, i.e., an open irregular network in ALD fibers and periodically arranged tubules with triadic expansions in the PLD fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The synthesis of two components of the basal lamina, laminin and type IV collagen, and their extracellular deposition on the surface of myotubes was studied in cultures of embryonic mouse and quail skeletal muscle cells and in the rat myoblast cell line L6. Production of type IV collagen and laminin by myoblasts and muscle fibroblasts was demonstrated by incorporation of radioactive amino acids into proteins and by immunoprecipitation with specific antibodies and electrophoretic analysis of labeled proteins. Immunofluorescence staining experiments revealed strong intracellular reactions with antibodies to laminin and type IV collagen in mononucleated myogenic and fibrogenic cells. Cells of fibroblast-like morphology showed a more intense staining than bipolar, spindle-shaped cells which perhaps represented postmitotic myoblasts. Myotubes did not show detectable intracellular staining. The formation of a basal lamina on myotubes was indicated by the deposition of laminin and type IV collagen on the surface of myotubes as viewed by immunofluorescence examination of unfixed cells. Staining for extracellular laminin was stronger in mass cultures than in myogenic clones, suggesting that secretion and deposition of components of the basal lamina on the myotube surface are complex processes which may involve cooperation between myogenic and fibrogenic cells.  相似文献   

11.
Autoradiographic studies were carried out on regenerating muscles of adult chickens. Three different muscles of hens were injured, and tritiated thymidine (1 microCi/g) was injected at various times after injury to label replicating muscle precursors. Detailed comparisons of grain counts over premitotic nuclei in samples removed one hour after injection of tritiated thymidine, and of postmitotic myotube nuclei in samples removed 10 days after injury (when labeled precursors had fused to form myotubes), revealed how many times some labeled precursors had divided before fusing into myotubes. DNA synthesis in muscle precursors was initiated 30 h after injury. Grain counts of myotube nuclei indicated that many muscle precursors labeled at the onset of myogenic cell proliferation had divided only once, or twice, before fusing into myotubes. The relationship of these in vivo results to the cell lineage model of myogenesis is discussed.  相似文献   

12.
Effects of mechanical forces exerted on mammalian skeletal muscle cells during development were studied using an in vitro model to unidirectionally stretch cultured C2C12 cells grown on silastic membrane. Previous models to date have not studied these responses of the mammalian system specifically. The silastic membrane upon which these cells were grown exhibited linear strain behavior over the range of 3.6-14.6% strain, with a Poisson's ratio of approximately 0.5. To mimic murine in utero long bone growth, cell substrates were stretched at an average strain rate of 2.36%/day for 4 days or 1.77%/day for 6 days with an overall membrane strain of 9.5% and 10.6%, respectively. Both control and stretched fibers stained positively for the contractile protein, alpha-actinin, demonstrating muscle fiber development. An effect of stretch on orientation and length of myofibers was observed. At both strain rates, stretched fibers aligned at a smaller angle relative to the direction of stretch and were significantly longer compared to randomly oriented control fibers. There was no effect of duration of stretch on orientation or length, suggesting the cellular responses are independent of strain rate for the range tested. These results demonstrate that, under conditions simulating mammalian long bone growth, cultured myocytes respond to mechanical forces by lengthening and orienting along the direction of stretch.  相似文献   

13.
Nascent muscle fiber appearance in overloaded chicken slow-tonic muscle   总被引:4,自引:0,他引:4  
The application of a weight overload to the humerus of chickens induces a hypertrophy of anterior latissimus dorsi (ALD) muscle fibers. This growth is accompanied by a rapid and almost complete replacement of one slow-tonic myosin isoform, SM-1, by another slow-tonic isoform, SM-2. In addition, a population of small fibers appears mainly in extrafascicular spaces and, concurrently, three additional myosin bands are detected by gel electrophoresis. Five antibodies against myosin heavy chain (MHC) isoforms were selected as immunocytochemical probes to determine the cellular location and nature of these myosins. The antibodies react with ventricular, fast skeletal muscle and either SM-1 or SM-2, or both the slow-tonic MHCs. The antifast and antiventricular antibodies react with myosin present in the 10-day embryonic ALD muscle but do not react with myosin in posthatch ALD muscle. The small fibers in overloaded muscle contain a myosin isoform characteristically expressed during the embryonic stage of ALD muscle development and therefore are named nascent myofibers. Some of the nascent myofibers do not react with the antibody to both slow-tonic MHCs, indicating the lack of the normal adult slow-tonic myosins which are expressed in 10-day embryos. In order to explore the origin of the nascent fibers, an electron microscopic study was performed. Stereological analysis of the existing fibers shows a stimulation of numbers and sizes of satellite cells. In addition, the volume occupied by nonmuscle and undifferentiated cells increases dramatically. Myotube formation with incipient myofibrils is seen in extrafascicular spaces. These data suggest that new muscle fiber formation accompanies hypertrophy in overloaded chicken ALD muscle and the process may involve satellite cell migration.  相似文献   

14.
During embryonic development, and before functional innervation, a highly stereotypic pattern of slow- and fast-contracting primary muscle fibers is established within individual muscles of the limbs, from distinct populations of myoblasts. A difference between the fiber-type pattern found within chicken and quail pectoral muscles was exploited to investigate the contributions of somite-derived myogenic precursors and lateral plate-derived mesenchymal stroma to the establishment of muscle fiber-type patterns. Chimeric chicken/quail embryos were constructed by reciprocal transplantation of somites or lateral plate mesoderm at stages prior to muscle formation. Muscle fibers derived from quail myogenic precursors that had migrated into chicken stroma showed a quail pattern of mixed fast- and slow-contracting muscle fibers. Conversely, chicken myogenic precursors that had migrated into quail stroma showed a chicken pattern of nearly exclusive fast muscle fiber formation. These results demonstrate in vivo an intrinsic commitment to fiber-type on the part of the myoblast, independent of extrinsic signals it receives from the mesenchymal stroma in which it differentiates.  相似文献   

15.
Autoradiographic studies were carried out on regenerating muscles of adult chickens. Three different muscles of hens were injured, and tritiated thymidine (1 μCi/g) was injected at various times after injury to label replicating muscle precursors. Detailed comparisons of grain counts over premitotic nuclei in samples removed one hour after injection of tritiated thymidine, and of postmitotic myotube nuclei in samples removed 10 days after injury (when labeled precursors had fused to form myotubes), revealed how many times some labeled precursors had divided before fusing into myotubes. DNA synthesis in muscle precursors was initiated 30 h after injury. Grain counts of myotube nuclei indicated that many muscle precursors labeled at the onset of myogenic cell proliferation had divided only once, or twice, before fusing into myotubes. The relationship of these in vivo results to the cell lineage model of myogenesis is discussed.  相似文献   

16.
17.
Fusion of myogenic cells in adult murine skeletal muscle regenerating in vivo was examined at the ultrastructural level. Fusion of myoblast to myoblast, myoblast to myotube, and myotube to myotube was observed by 4 to 5 days after injury. Fusion between myogenic cells (myoblasts or myotubes) lacking a definitive glycocalyx or external lamina (basal lamina) occurred at multiple sites. It was defined by zones of cytoplasmic confluence between apposed cells at sites where contiguous segments of the cell membranes were interrupted while their edges had united resulting in linear continuity; vesicles of varying dimensions were frequent in these areas of fusion. Myoblasts were seen invaginating the surface of myofibres and again vesicles were seen in abundance in such regions. Cilia were often observed at this junctional zone suggesting that they might play a role in fusion. In the one example of probable fusion between a myotube and a myofibre, only a single area of cytoplasmic continuity was apparent.  相似文献   

18.
Each vertebrate skeletal muscle fiber is ensheathed by a basal lamina (BL) which passes through the synaptic cleft of the neuromuscular junction. In the adult, the synaptic portion of the BL is both functionally and chemically specialized. We have used an immunofluorescence method to compare the development of synaptic and extrasynaptic portions of BL in embryonic rat intercostal muscles. Immunohistochemical staining of adult muscle fibers with monoclonal and serum antibodies defines "synaptic" antigens (including acetylcholinesterase) that are concentrated in synaptic BL, "extrasynaptic" antigens that are concentrated in extrasynaptic regions, and "shared" antigens (including collagen IV, fibronectin, laminin, and a heparan sulfate proteoglycan) that are present in both synaptic and extrasynaptic BL ( Sanes and Chiu , 1983). Synapses appear on newly formed myotubes on embryonic Day 14 (E14; birth is on E22 ). Patches of BL that contain shared and extrasynaptic antigens are present on myotube surfaces by E15, and BL forms a continuous sheath by E17. Shared antigens are present at but not confined to synaptic areas by E15. Two synaptic antigens appear in synaptic areas a day later, and are not detectable extrasynaptically . At least one extrasynaptic antigen is present at immature synapses, and lost or masked by E19 . Thus synaptic BL is not assembled as a unit; rather, components are added, lost, or modified as synaptogenesis proceeds.  相似文献   

19.
A kinetic model based on constrained mixture theory was developed to describe the reorganization of actin stress fibers in adherent cells in response to diverse patterns of mechanical stretch. The model was based on reports that stress fibers are pre-extended at a “homeostatic” level under normal, non-perturbed conditions, and that perturbations in stress fiber length destabilize stress fibers. In response to a step change in matrix stretch, the model predicts that stress fibers are initially stretched in registry with the matrix, but that these overly stretched fibers are gradually replaced by new fibers assembled with the homeostatic level of stretch in the new configuration of the matrix. In contrast, average fiber stretch is chronically perturbed from the homeostatic level when the cells are subjected to cyclic equibiaxial stretch. The model was able to describe experimentally measured time courses of stress fiber reorientation perpendicular to the direction of cyclic uniaxial stretch, as well as the lack of alignment in response to equibiaxial stretch. The model also accurately described the relationship between stretch magnitude and the extent of stress fiber alignment in endothelial cells subjected to cyclic uniaxial stretch. Further, in the case of cyclic simple elongation with transverse matrix contraction, stress fibers orient in the direction of least perturbation in stretch. In summary, the model predicts that the rate of stretch-induced stress fiber disassembly determines the rate of alignment, and that stress fibers tend to orient toward the direction of minimum matrix stretch where the rate of stress fiber turnover is a minimum.  相似文献   

20.
The organogenesis of the soleus muscle of the 129 ReJ mouse (a mixed muscle, which in the adult contains approximately equal numbers of slow-twitch oxidative and fast-twitch oxidative-glycolytic myofibers) was studied in spaced, serial transverse, and longitudinal sections of muscles of 14-, 16-, and 18-day in utero and 1- and 5-day postnatal mice. A discrete soleus muscle was distinguished by 14 days in utero. It consisted of groups of closely apposed primary myotubes displaying junctional complexes and a pleomorphic population of mononucleated cells. Between 14 and 16 days in utero there was little de novo myotube formation. At 16 days in utero, basal lamina surrounded groups of primary myotubes; and primitive motor endplates were found on these myotubes. At 18 days in utero, the basal-lamina-enclosed groups of primary myotubes were no longer present. At this stage, basal lamina surrounded clusters (consisting of one primary myotube and one or more secondary myotubes) or independent myotubes (single myotubes surrounded by their own basal lamina). Cluster formation and cluster dispersal occurred concurrently, beginning at 18 days in utero and extending until birth. At birth, there was still a substantial population of immature, secondary myotubes that interdigitated with larger, more mature primary myofibers. At this stage, intermuscular axons had begun to myelinate, and postsynaptic specialization of the motor endplates had begun. Cluster dispersal and myonuclear migration was completed during the first 5 days postnatally with the muscle taking on adult characteristics. Beginning at 16 days in utero and extending into the neonatal period, there was evidence of myotube death in the soleus muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号