首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Trypanosoma brucei contains two tandemly arranged genes for glycerol kinase. The downstream gene was analysed in detail. It contains an ORF for a polypeptide of 512 amino acids. The polypeptide has a calculated molecular mass of 56 363 Da and a pI of 8.6. Comparison of the T. brucei glycerol kinase amino-acid sequence with the glycerol kinase sequences available in databases revealed positional identities of 39.0-50.4%. The T. brucei glycerol kinase gene was overexpressed in Escherichia coli cells and the recombinant protein obtained was purified and characterized biochemically. Its kinetic properties with regard to both the forward and reverse reaction were measured. The values corresponded to those determined previously for the natural glycerol kinase purified from the parasite, and confirmed that the apparent Km values of the trypanosome enzyme for its substrates are relatively high compared with those of other glycerol kinases. Alignment of the amino-acid sequences of T. brucei glycerol kinase and other eukaryotic and prokaryotic glycerol kinases, as well as inspection of the available three-dimensional structure of E. coli glycerol kinase showed that most residues of the magnesium-, glycerol- and ADP-binding sites are well conserved in T. brucei glycerol kinase. However, a number of remarkable substitutions was identified, which could be responsible for the low affinity for the substrates. Most striking is amino-acid Ala137 in T. brucei glycerol kinase; in all other organisms a serine is present at the corresponding position. We mutated Ala137 of T. brucei glycerol kinase into a serine and this mutant glycerol kinase was over-expressed and purified. The affinity of the mutant enzyme for its substrates glycerol and glycerol 3-phosphate appeared to be 3. 1-fold to 3.6-fold higher than in the wild-type enzyme. Part of the glycerol kinase gene comprising this residue 137 was amplified in eight different kinetoplastid species and sequenced. Interestingly, an alanine occurs not only in T. brucei, but also in other trypanosomatids which can convert glucose into equimolar amounts of glycerol and pyruvate: T. gambiense, T. equiperdum and T. evansi. In trypanosomatids with no or only a limited capacity to produce glycerol, a hydroxy group-containing residue is found as in all other organisms: T. vivax and T. congolense possess a serine while Phytomonas sp., Leishmania brasiliensis and L. mexicana have a threonine.  相似文献   

3.
A 4175-bp EcoRI fragment of DNA that encodes the alpha and beta chains of the pyruvate dehydrogenase (lipoamide) component (E1) of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus has been cloned in Escherichia coli. Its nucleotide sequence was determined. Open reading frames (pdhA, pdhB) corresponding to the E1 alpha subunit (368 amino acids, Mr 41,312, without the initiating methionine residue) and E1 beta subunit (324 amino acids, Mr 35,306, without the initiating methionine residue) were identified and confirmed with the aid of amino acid sequences determined directly from the purified polypeptide chains. The E1 beta gene begins just 3 bp downstream from the E1 alpha stop codon. It is followed, after a longer gap of 73 bp, by the start of another but incomplete open reading frame that, on the basis of its known amino acid sequence, encodes the dihydrolipoyl acetyltransferase (E2) component of the complex. All three genes are preceded by potential ribosome-binding sites and the gene cluster is located immediately downstream from a region of DNA showing numerous possible promoter sequences. The E1 alpha and E1 beta subunits of the B. stearothermophilus pyruvate dehydrogenase complex exhibit substantial sequence similarity with the E1 alpha and E1 beta subunits of pyruvate and branched-chain 2-oxo-acid dehydrogenase complexes from mammalian mitochondria and Pseudomonas putida. In particular, the E1 alpha chain contains the highly conserved sequence motif that has been found in all enzymes utilizing thiamin diphosphate as cofactor.  相似文献   

4.
5.
The denitrifying strain T1 is able to grow with toluene serving as its sole carbon source. Two mutants which have defects in this toluene utilization pathway have been characterized. A clone has been isolated, and subclones which contain tutD and tutE, two genes in the T1 toluene metabolic pathway, have been generated. The tutD gene codes for an 864-amino-acid protein with a calculated molecular mass of 97,600 Da. The tutE gene codes for a 375-amino-acid protein with a calculated molecular mass of 41,300 Da. Two additional small open reading frames have been identified, but their role is not known. The TutE protein has homology to pyruvate formate-lyase activating enzymes. The TutD protein has homology to pyruvate formate-lyase enzymes, including a conserved cysteine residue at the active site and a conserved glycine residue that is activated to a free radical in this enzyme. Site-directed mutagenesis of these two conserved amino acids shows that they are also essential for the function of TutD.  相似文献   

6.
7.
Cloned cDNAs encoding both subunits of Drosophila melanogaster casein kinase II have been isolated by immunological screening of lambda gt11 expression libraries, and the complete amino acid sequence of both polypeptides has been deduced by DNA sequencing. The alpha cDNA contained an open reading frame of 336 amino acid residues, yielding a predicted molecular weight for the alpha polypeptide of 39,833. The alpha sequence contained the expected semi-invariant residues present in the catalytic domain of previously sequenced protein kinases, confirming that it is the catalytic subunit of the enzyme. Pairwise homology comparisons between the alpha sequence and the sequences of a variety of vertebrate protein kinase suggested that casein kinase II is a distantly related member of the protein kinase family. The beta subunit was derived from an open reading frame of 215 amino acid residues and was predicted to have a molecular weight of 24,700. The beta subunit exhibited no extensive homology to other proteins whose sequences are currently known.  相似文献   

8.
Abstract A cDNA encoding pyruvate kinase from Schizosaccharomyces pombe has been isolated from a lambda ZAPII library. This cDNA was sequenced and found to contain an open reading frame of 1524 nucleotides, giving a predicted protein subunit M r of 55 470. The sequence shows a high degree of identity with other pyruvate kinase sequences, with residues implicated in the binding of substrate and metal ion co-factors conserved. However, there are significant differences in the putative subunit interface and effector binding regions which may account for the unusual quaternary structure and regulatory properties of the S. pombe enzyme.  相似文献   

9.
In Trypanosoma brucei the enzyme glucose-6-phosphate isomerase, like most other enzymes of the glycolytic pathway, resides in a microbody-like organelle, the glycosome. Here we report a detailed study of this enzyme, involving a determination of its kinetic properties and the cloning and sequence analysis of its gene. The gene codes for a polypeptide of 606 amino acids, with a calculated Mr of 67280. The protein predicted from the gene sequence has 54-58% positional identity with its yeast and mammalian counterparts. Compared to those other glucose-6-phosphate isomerases the trypanosomal enzyme contains an additional 38-49 amino acids in its N-terminal domain, as well as a number of small insertions and deletions. The additional amino acids are responsible for the 5-kDa-larger subunit mass of the T. brucei enzyme, as measured by gel electrophoresis. The glucose-6-phosphate isomerase of the trypanosome has no excess of positive residues and, consequently, no high isoelectric point, in contrast to the other glycolytic enzymes that are present in the glycosome. However, similar to other glycosomal proteins analyzed so far, specific clusters of positive residues can be recognized in the primary structure. Comparison of the kinetic properties of the T. brucei glucose-6-phosphate isomerase with those of the yeast and rabbit muscle enzymes did not reveal major differences. The three enzymes have very similar pH profiles. The affinity for the substrate fructose 6-phosphate (Km = 0.122 mM) and the inhibition constant for the competitive inhibitor gluconate 6-phosphate (Ki = 0.14 mM) are in the same range as those of the similar enzymes. The Km shows the same strong dependence on salt as the rabbit muscle enzyme, although somewhat less than the yeast glucose-6-phosphate isomerase. The trypanocidal drug suramin inhibits the T. brucei and yeast enzymes to the same extent (Ki = 0.29 and 0.36 mM, respectively), but it had no effect on the rabbit muscle enzyme. Agaricic acid, a potent inhibitor of various glycosomal enzymes of T. brucei, has also a strong, irreversible effect on glucose-6-phosphate isomerase, while leaving the yeast and mammalian enzymes relatively unaffected.  相似文献   

10.
Pyruvate kinase activity is an important element in the flux control of the intermediate metabolism. The purified enzyme from Corynebacterium glutamicum demonstrated a marked sigmoidal dependence of the initial rate on the phosphoenolpyruvate concentration. In the presence of the negative allosteric effector ATP, the phosphoenolpyruvate concentration at the half-maximum rate (S0.5) increased from 1.2 to 2.8 mM, and cooperation, as expressed by the Hill coefficient, increased from 2.0 to 3.2. AMP promoted opposite effects: the S0.5 was decreased to 0.4 mM, and the enzyme exhibited almost no cooperation. The maximum reaction rate was 702 U/mg, which corresponded to an apparent kcat of 2,540 s-1. The enzyme was not influenced by fructose-1,6-diphosphate and used Mn2+ or Co2+ as cations. Sequence determination of the C. glutamicum pyk gene revealed an open reading frame coding for a polypeptide of 475 amino acids. From this information and the molecular mass of the native protein, it follows that the pyruvate kinase is a tetramer of 236 kDa. Comparison of the deduced polypeptide sequence with the sequences of other bacterial pyruvate kinases showed 39 to 44% homology, with some regions being very strongly conserved.  相似文献   

11.
The nucleotide sequence of a full-length cDNA encoding phosphofructokinase (PFK) enzyme from the parasitic nematode Ascaris suum was determined. The entire sequence of 2,653 bases comprises a single open reading frame of 2,452 bases and a noncoding region of 201 bases after the stop codon. The mature protein contains 812 amino acids and has a molecular mass of 90,900 Da. The amino acid sequences of several peptides derived from the purified protein show excellent correspondence with the translated nucleotide sequence. Comparison of the amino acid sequence of the protein with those of 3 other worms as well as those of human, rabbit, and bacterial enzymes reveals highly conserved regions interrupted with stretches of lesser sequence similarity. Analyses of the subunit primary structure reveal, as in other eukaryotic PFKs, that the amino-terminal half is homologous to the carboxy-terminal half, supporting the hypothesis that the PFK gene evolved by duplication of the prokaryotic gene and that the allosteric sites arose by mutations at the catalytic site. The location of the phosphorylation site is unique and different compared with other PFKs and plays a key role in regulation of the enzyme activity. Structural motifs such as the putative substrate and effector binding domains and also the key amino acids involved therein are clearly identified by alignment of all the PFK protein sequences.  相似文献   

12.
This work reports the characterization of an arginine kinase in the unicellular parasitic flagellate Trypanosoma brucei, the etiological agent of human sleeping sickness and Nagana in livestock. The arginine kinase activity, detected in the soluble fraction obtained from procyclic forms, had a specific activity similar to that observed in Trypanosoma cruzi, about 0.2 micromol min(-1) mg(-1). Western blot analysis of T. brucei extracts revealed two bands of 40 and 45 kDa. The putative gene sequence of this enzyme had an open reading frame for a 356-amino acid polypeptide, one less than the equivalent enzyme of T. cruzi. The deduced amino acid sequence has an 82% identity with the arginine kinase of T. cruzi, and highest amino acid identities of both trypanosomatids sequences, about 70%, were with arginine kinases from the phylum Arthropoda. In addition, the amino acid sequence possesses the five arginine residues critical for interaction with ATP as well as two glutamic acids and one cysteine required for arginine binding. The finding in trypanosomatids of a new phosphagen biosynthetic pathway, which is not present in mammalian host tissues, suggests this enzyme as a possible target for chemotherapy.  相似文献   

13.
ZMPP2, a novel type-2C protein phosphatase from maize   总被引:2,自引:0,他引:2  
  相似文献   

14.
We have cloned cDNAs encoding the last iron-sulphur protein of complex I from Neurospora crassa. The cDNA sequence contains an open reading frame that codes for a precursor polypeptide of 226 amino acid residues with a molecular mass of 24972 Da. Our results indicate that the mature protein belongs probably to the peripheral arm of complex I and is rather unstable when not assembled into the enzyme. The protein is highly homologous to the PSST subunit of bovine complex I, the most likely candidate to bind iron-sulphur cluster N-2. All the amino acid residues proposed to bind such a cluster are conserved in the fungal protein.  相似文献   

15.
We have isolated from a Lambda-gt 11 library a human cDNA clone with one open reading frame of about 2400 bases. A stretch of about 350 amino acids in the deduced amino acid sequence is up to 40 percent identical with parts of the known amino acid sequences of E. coli and yeast glutaminyl (Gln)-tRNA synthetase. The isolated cDNA sequence corresponds to an internal section of a 5500 bases long mRNA that codes for a 170 kDa polypeptide associated with Gln-tRNA synthetase. Thus, the human enzyme is about three times larger than the E. coli and two times larger than the yeast Gln-tRNA synthetase. The three enzymes share an evolutionarily conserved core but differ in amino acid sequences linked to the N-terminal and C-terminal side of the core.  相似文献   

16.
THR1, the gene from Saccharomyces cerevisiae, encoding homoserine kinase, one of the threonine biosynthetic enzymes, has been cloned by complementation. The nucleotide sequence of a 3.1-kb region carrying this gene reveals an open reading frame of 356 codons, corresponding to about 40 kDa for the encoded protein. The presence of three canonical GCN4 regulatory sequences in the upstream flanking region suggests that the expression of THR1 is under the general amino acid control. In parallel, the enzyme was purified by four consecutive column chromatographies, monitoring homoserine kinase activity. In SDS gel electrophoresis, homoserine kinase migrates like a 40-kDa protein; the native enzyme appears to be a homodimer. The sequence of the first 15 NH2-terminal amino acids, as determined by automated Edman degradation, is in accordance with the amino acid sequence deduced from the nucleotide sequence. Computer-assisted comparison of the yeast enzyme with the corresponding activities from bacterial sources showed that several segments among these proteins are highly conserved. Furthermore, the observed homology patterns suggest that the ancestral sequences might have been composed from separate (functional) domains. A block of very similar amino acids is found in the homoserine kinases towards the carboxy terminus that is also present in many other proteins involved in threonine (or serine) metabolism; this motif, therefore, may represent the binding site for the hydroxyamino acids. Limited similarity was detected between a motif conserved among the homoserine kinases and consensus sequences found in other mono- or dinucleotide-binding proteins.  相似文献   

17.
The gene for the thermostable pyruvate kinase of Microbispora thermodiastatica IFO 14046, a moderate thermophilic actinomycete, was cloned in Escherichia coli. This gene consists of an open reading frame of 1422 nucleotides and encodes a protein of 474 amino acids with molecular mass of 50 805 Da. The open reading frame was confirmed as the pyruvate kinase gene by comparison with the N-terminal amino acid sequence of the purified pyruvate kinase from M. thermodiastatica. Received: 19 May 1997 / Received last revision: 22 September 1997 / Accepted: 14 October 1997  相似文献   

18.
A gene coding for adenylate kinase was cloned from an extremely thermoacidophilic archaeon Sulfolobus solfataricus. The open reading frame of the sequenced gene consisted of 585 nucleotides coding for a polypeptide of 195 amino acid residues with a calculated molecular weight of 21,325. Although the S. solfataricus adenylate kinase, which belonged to the small variants of the adenylate kinase family, had low sequence identities with bacterial and eukaryotic enzymes, a functionally important glycine-rich region and also two invariant arginine residues were conserved in the sequence of the S. solfataricus enzyme. The recombinant enzyme, overexpressed in Escherichia coli and purified to homogeneity, had high affinity for AMP and high thermal stability, comparable to the extremely thermostable enzyme from a similar archaeon, S. acidocaldarius. Furthermore, gel filtration and sedimentation analyses showed that the S. solfataricus adenylate kinase was a homotrimer in solution, which is a novel subunit structure for nucleoside monophosphate kinases.  相似文献   

19.
The gene pcp, encoding pyrrolidone carboxyl peptidase (Pcp), from Pseudomonas fluorescens MFO was cloned and its nucleotide sequence was determined. This sequence contains a unique open reading frame (pcp) coding for a polypeptide of 213 amino acids (M(r) 22,441) which has significant homology to the Pcps from Streptococcus pyogenes, Bacillus subtilis, and Bacillus amyloliquefaciens. Comparison of the four Pcp sequences revealed two highly conserved motifs which may be involved in the active site of these enzymes. The cloned Pcp from P. fluorescens was purified to homogeneity and appears to exist as a dimer. This enzyme displays a Michaelis constant of 0.21 mM with L-pyroglutamyl-beta-naphthylamide as the substrate and an absolute substrate specificity towards N-terminal pyroglutamyl residues. Studies of inhibition by chemical compounds revealed that the cysteine and histidine residues are essential for enzyme activity. From their conservation in the four enzyme sequences, the Cys-144 and His-166 amino acids are proposed to form a part of the active site of these enzymes.  相似文献   

20.
The cDNA of the second largest subunit of RNA polymerase II (or B) from HeLa cells has been cloned and sequenced. A predicted amino acid sequence of 1174 residues (calculated molecular mass of 133,896 Da) was derived from the longest open reading frame and compared to the sequences of homologous subunits of polymerases of eukaryotic, archaeal and bacterial origin. After optimal alignment, about 16% of the residues were found to be conserved throughout evolution, from human to Escherichia coli. About 2/3 of the overall length of the conserved domains delineated by these residues are clustered within the C-terminal half of the human polypeptide, whereas the remaining is spread over its N-terminal half. The putative functional significance of these conserved domains is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号