首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli grows on long-chain fatty acids after a distinct lag phase. Cells, preadapted to palmitate, grow immediately on fatty acids, indicating that fatty acid oxidation in this bacterium is an inducible system. This hypothesis is supported by the fact that cells grown on palmitate oxidize fatty acids at rates 7 times faster than cells grown on amino acids and 60 times faster than cells grown on a combined medium of glucose and amino acids. The inhibitory effect of glucose may be explained in terms of catabolite repression. The activities of the five key enzymes of beta-oxidation [palmityl-coenzyme A (CoA) synthetase, acyl-CoA dehydrogenase, enoyl-CoA hydrase, beta-hydroxyacyl-CoA dehydrogenase, and thiolase] all vary coordinately over a wide range of activity, indicating that they are all under unit control. The ability of a fatty acid to induce the enzymes of beta-oxidation and support-growth is a function of its chain length. Fatty acids of carbon chain lengths of C(14) and longer induce the enzymes of fatty acid oxidation and readily support growth, whereas decanoate and laurate do not induce the enzymes of fatty acid oxidation and only support limited growth of palmitate-induced cells. Two mutants, D-1 and D-3, which grow on decanoate and laurate were isolated and were found to contain constitutive levels of the beta-oxidation enzymes. Short-chain fatty acids (相似文献   

2.
Extracts from tissues of 24 plant species were tested for the enzyme that catalyzes the conversion of 13-l-hydroperoxy-cis-9,15-trans-11-octadecatrienoic acid to the cyclic fatty acid 12-oxo-cis-10,15-phytodienoic acid. The enzyme was detected in 15 of the 24 tissues examined, and was demonstrated in seedlings, leaves, and fruits.  相似文献   

3.
The role of abscisic Acid in cross-adaptation of tobacco plants   总被引:6,自引:0,他引:6       下载免费PDF全文
Tobacco plants (Nicotiana rustica L.) pre-exposed to leaf dehydration, mineral deprivation, salination, or BO33− toxicity exhibited increased resistance to subzero temperature and to reduced oxygen in the root medium. The stressed plants all showed an elevated content of leaf abscisic acid. Upon transfer of mineral deprived and salinated plants to prestress conditions, a decline in leaf abscisic acid content to prestress levels took place together with a loss of the increased resistance to subzero temperature and to deprivation of root oxygen. Treatment with abscisic acid by direct application to the leaves or by addition to the root medium improved leaf resistance to subzero temperature and to deprivation of root oxygen. A common hormone-regulation mechanism involving abscisic acid is suggested for this phenomenon of “cross-adaptation” by which a given stress confers increased resistance to other, apparently unrelated stresses.  相似文献   

4.
This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology.  相似文献   

5.
The fatty acid composition of the major lipids of the chloroplast membranes, the mono- and digalactosyl diglycerides, can be definably altered with various substituted pyridazinones. Galactolipid fatty acid composition of wheat (Triticum aestivum L.) can be altered so that there is a decrease in linolenic acid accompanied by an increase in linoleic acid without a shift in the relative proportion of saturated to unsaturated fatty acids; the fatty acid composition can be shifted toward a higher proportion of saturated fatty acids; or the fatty acid composition of the monogalactosyl diglycerides can be altered in preference to the digalactosyl diglycerides. Also, the light-mediated parallel accumulation of chlorophyll and linolenic acid can be separated with a substituted pyridazinone. The substituted pyridazinones may be useful tools in clarifying the role the galactolipids and their component fatty acids play in the structure and function of chloroplast membranes in higher plants.  相似文献   

6.
Lem NW  Stumpf PK 《Plant physiology》1984,74(1):134-138
In vitro fatty acid synthesis was examined in crude cell extracts, soluble fractions, and 80% (NH4)2SO4 fractions from Anabaena variabilis M3. Fatty acid synthesis was absolutely dependent upon acyl carrier protein and required NADPH and NADH. Moreover, fatty acid synthesis and elongation occurred in the cytoplasm of the cell. The major fatty acid products were palmitic acid (16:0) and stearic acid (18:0). Of considerable interest, both stearoyl-acyl carrier protein and stearoyl-coenzyme A desaturases were not detected in any of the fractions from A. variabilis. The similarities and differences in fatty acid synthesis between A. variabilis and higher plant tissues are discussed with respect to the endosymbiotic theory of chloroplast evolution.  相似文献   

7.
Skok J 《Plant physiology》1968,43(2):215-223
Stem applications of indole-3-acetic acid (IAA) or gibberellic acid (GA) did not prevent or alter tumor or teratoma formation in debudded tobacco plants (Nicotiana tabacum L., var. One Sucker). The materials produced intense (in case of GA) and moderate (in case of IAA) stem proliferations when applied to debudded plants but were without effect on intact plants.

The results suggest that debudding-tumors are probably not related to or a result of an auxin or gibberellin deficit and that total debudding has a marked physiological effect on the plant. The altered physiological condition of the debudded plant, indicated by its responses to IAA and GA, may likely be related to tumor and teratoma formation.

  相似文献   

8.
9.
Fatty Acid Replacements in a Fatty Acid Auxotroph of Escherichia coli   总被引:17,自引:17,他引:17       下载免费PDF全文
Unsaturated fatty acids having structural features which are different from those of the monoenoic acids normally synthesized by Escherichia coli can serve as growth factors for an auxotroph requiring unsaturated fatty acids. These analogues were incorporated into the phospholipids, as shown by gas-liquid and thin-layer chromatographic analysis of the phospholipid fatty acid composition. Some of these fatty acids were cisDelta(5)- and cis-Delta(9)-tetradecenoic, cis-Delta(11)-eicosenoic, cis,cis-Delta(11,14)-eicosadienoic, cis,cis,cis-Delta(11,14,17)-eicosatrienoic, trans-Delta(9)- and trans-Delta(11)-octadecenoic acids. Although partial degradation of some of these analogues to shorter even-chain homologues occurred, chain elongation of the exogenous fatty acids was not detected. Trans-olefinic acids were utilized without stereochemical or positional isomerization. These studies provide a basis for exploring the properties of the fatty acids and phospholipids required for the formation, structure, and function of membranes.  相似文献   

10.
Fatty acid-derived signals in plants   总被引:20,自引:0,他引:20  
Plants synthesize many fatty acid derivatives, several of which play important regulatory roles. Jasmonates are the best characterized examples. Jasmonate-insensitive mutants and mutants with a constitutive jasmonate response have given us new insights into jasmonate signalling. The jasmonate biosynthesis mutant opr3 allowed the dissection of cyclopentanone and cyclopentenone signalling, thus defining specific roles for these molecules. Jasmonate signalling is a complex network of individual signals and recent findings on specific activities of methyl jasmonate and (Z)-jasmone add to this picture. In addition, there are keto, hydroxy and hydroperoxy fatty acids that might be involved in cell death and the expression of stress-related genes. Finally, there are bruchins and volicitin, signal molecules from insects that are perceived by plants in the picomole to femtomole range. They highlight the importance of fatty acid-derived molecules in interspecies communication and in plant defence.  相似文献   

11.
12.
The fatty acid composition of 42 isolates belonging to the major plant affinity groups of Rhizobium has been determined and found to vary reproducible with culture age. Numerical taxonomic techniques applied to the 15 major fatty acid components of log-phase cultures of comparable physiological age showed that the rhizobia constitute a uniform group. However, two clusters comprising soybean-cowpea isolates and pea-bean isolates were evident. These observations, based on a simple analysis of only one group of chemical components, indicate relationships among rhizobia which differ from the conventional plant-affinity groupings but which are consistent with other proposed relationships established using a variety of biochemical and physiological criteria.  相似文献   

13.
Fatty acid hydroperoxide lyase (HPO lyase) was purified to apparentlyhomogeneity state from immature fruits of green bell pepper(Capsicum annuum L.) by differential centrifugation, ion-exchangechromatography, hydroxylapatite chromatography and gel filtration.The enzymatic activity was separated into two fractions (HPOlyases I and II) during the chromatography on hydroxylapatite.Both the isoforms were deduced to be trimers of 55-kDa subunitsand have similar enzymatic properties. Peptide maps revealedonly slight differences between them. Furthermore, immunoblotanalysis showed that an antibody raised against HPO lyase Ireacted with HPO lyase II as strongly as with the original antigen.These results indicate that there is only limited heterogeneityin terms of amino acid sequence and/or post-translational modification.The activities of both HPO lyases were considerably inhibitedby lipophilic antioxidants, such as nordihydroguaiaretic acidand  相似文献   

14.
15.
16.
Changes in fatty acid composition of chloroplast membrane lipids were investigated using tobacco (Nicotiana tabacum L., cv. Samsun) plants subjected to cold hardening for 6 days at 8°C. Under optimal growing temperature (22°C), the lipids of thylakoid membranes were characterized by elevated content of 16:3n-3 and 18:3n-3 fatty acids (FA). Compared to the lipids of chloroplast envelope membranes, the thylakoid lipids were less rich in the content of saturated, mono- and diunsaturated FA. The relative content of unsaturated FA in chloroplast membranes increased substantially during cold hardening, which was mainly due to the accumulation of 18:3n-3 FA. It is concluded that the observed changes in FA composition of chloroplast lipids during cold hardening adjust the fluidity of these membranes to the level sufficient for functioning of tobacco photosynthetic apparatus, which is a prerequisite for accumulation of assimilates and allows the hardened tobacco plants to survive under conditions of hypothermia.  相似文献   

17.
During the investigation on the metabolism of azelaic acid by Micrococcus sp., it was found that the bacterium produced a large amount of keto acid (α-ketoglutaric acid) under the restricted condition for nitrogen source. The acid was identified as α-ketoglutaric acid by physico-chemical and biological methods. The mechanism of the production of α-ketoglutaric acid from azelaic acid was investigated. From the result, it was suggested that α-ketoglutaric acid production proceeded thrpugh the further oxidation of acetic acid produced from azelaic acid and that the production might be functioned by TCA cycle enzymes of the bacterium. Similarly, α-ketoglutaric acid was found to be produced remarkably from other various fatty acids.  相似文献   

18.
The production of pimelic acid from azelaic acid by microorganisms was studied. About 100 strains of bacteria which were able to utilize azelaic acid as a sole carbon source were isolated from soil and other natural materials. Among these bacteria, several strains produced a large quantity of an organic acid (pimelic acid) from azelaic acid in their culture fluids during the cultivation. The acid was isolated from the culture fluid of strain A133 in crystalline form. The crystal was identified as pimelic acid by physicochemical and biological methods.

From the results of investigations on the morphological and physiological characters, the bacterial strain A133 was assumed to be Micrococcus sp.  相似文献   

19.
Expression of tandem gene fusions in transgenic tobacco plants.   总被引:4,自引:0,他引:4       下载免费PDF全文
We have studied the expression of four sets of tandem gene fusions in transgenic tobacco plants. This was to determine if the problem of between-transformant variability in expression of introduced genes could be overcome by using a linked reference gene as a co-ordinately expressed control. Tandem gene fusions containing identical 5' flanking regions (SSU301-ocs with either SSU301-cat or SSU301-SSU911) were not co-ordinately expressed in the transgenic tobacco plants whereas the tandem gene fusions containing similar but not identical 5' flanking regions (SSU301-ocs with SSU911-cat or SSU911-SSU301) were co-ordinately expressed. The lack of co-ordinate expression of some of the tandem gene fusions appears to be partially explained by absence of the corresponding genomic DNA segments in the transgenic plants.  相似文献   

20.
Neal, A. L. (Rutgers, The State University, New Brunswick, N.J.), Joan O. Weinstock, and J. Oliver Lampen. Mechanisms of fatty acid toxicity for yeast. J. Bacteriol. 90:126-131. 1965.-The internal pH of stationary- and log-phase yeast cells dropped quite rapidly when the cells were exposed to acetate buffers at pH 4 and 3, whereas no, or much less, acidification occurred with pyruvate or phosphate. Although inhibition of respiration and glycolysis was almost instantaneous when the cells were exposed to 0.2 m acetate at pH 4, the effect was not permanent and could be reversed by washing them with water or phosphate buffer. Irreversible inhibition did occur, however, at 0.5 m acetate under the same conditions; there was a marked decrease in several glycolytic enzyme systems, which undoubtedly contributed to the irreversible nature of the inhibition. In cell-free homogenates, various low-molecular-weight monocarboxylic acids exhibited about the same inhibitory effect on glycolysis; structural differences such as branching or unsaturation did not cause a marked change in their inhibitory effect. Also, glycolysis was much more sensitive to dicarboxylic acids such as succinate and phthalate than to acetate; phthalate was more inhibitory than succinate. This is in contrast with the noninhibitory nature of succinate and phthalate to whole cells, even at pH 4. Pyruvic acid decarboxylation was inhibited by phthalate but not by succinate. The greater toxic effect of phthalic acid may be due to the fixed steric configuration of its carboxyl groups, as compared with those of succinic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号