首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ancient mtDNA was successfully recovered from 24 skeletal samples of a total of 60 ancient individuals from Patagonia-Tierra del Fuego, dated to 100-400 years BP, for which consistent amplifications and two-strand sequences were obtained. Y-chromosome STRs (DYS434, DYS437, DYS439, DYS393, DYS391, DYS390, DYS19, DYS389I, DYS389II, and DYS388) and the biallelic system DYS199 were also amplified, Y-STR alleles could be characterized in nine cases, with an average of 4.1 loci per sample correctly typed. In two samples of the same ethnic group (Aonikenk), an identical and complete eight-loci haplotype was recovered. The DYS199 biallelic system was used as a control of contamination by modern DNA and, along with DYS19, as a marker of American origin. The analysis of both mtDNA and Y-STRs revealed DNA from Amerindian ancestry. The observed polymorphisms are consistent with the hypothesis that the ancient Fuegians are close to populations from south-central Chile and Argentina, but their high nucleotide diversity and the frequency of single lineages strongly support early genetic differentiation of the Fuegians through combined processes of population bottleneck, isolation, and/or migration, followed by strong genetic drift. This suggests an early genetic diversification of the Fuegians right after their arrival at the southernmost extreme of South America.  相似文献   

2.
The geographic structure of Y-chromosome variability has been analyzed in native populations of South America, through use of the high-frequency Native American haplogroup defined by the DYS199-T allele and six Y-chromosome-linked microsatellites (DYS19, DYS389A, DYS389B, DYS390, DYS391, and DYS393), analyzed in 236 individuals. The following pattern of within- and among-population variability emerges from the analysis of microsatellite data: (1) the Andean populations exhibit significantly higher levels of within-population variability than do the eastern populations of South America; (2) the spatial-autocorrelation analysis suggests a significant geographic structure of Y-chromosome genetic variability in South America, although a typical evolutionary pattern could not be categorically identified; and (3) genetic-distance analyses and the analysis of molecular variance suggest greater homogeneity between Andean populations than between non-Andean ones. On the basis of these results, we propose a model for the evolution of the male lineages of South Amerindians that involves differential patterns of genetic drift and gene flow. In the western part of the continent, which is associated with the Andean area, populations have relatively large effective sizes and gene-flow levels among them, which has created a trend toward homogenization of the gene pool. On the other hand, eastern populations-settled in the Amazonian region, the central Brazilian plateau, and the Chaco region-have exhibited higher rates of genetic drift and lower levels of gene flow, with a resulting trend toward genetic differentiation. This model is consistent with the linguistic and cultural diversity of South Amerindians, the environmental heterogeneity of the continent, and the available paleoecological data.  相似文献   

3.
Using the primers described for humans, sequences for 11 Y-specific microsatellites (DYS434, DYS435, DYS436, DYS437, DYS438, DYS439, GATA A10, A7.1, A7.2, C4, and H4 [Gusm?o et al., in press]), previously described in 10 male chimpanzees (Pan troglodytes), were confirmed in nine additional male chimpanzees. Sequences for nine additional microsatellites (DYS19, DYS385I and II, DYS389I and II, DYS390, DYS391, DYS392, and DYS393) were determined in all 19 male chimpanzees; homology to human Y-Short Tandem Repeat (STRs) was confirmed by sequencing. Good amplification results were not obtained for DYS19 and DYS385I/II. Two amplicons were obtained for DYS389I/II, but in contrast to humans, the larger fragment was not Y-specific. Moreover, no polymorphism was observed for DYS434, DYS435, or GATA A10. Consequently, these eight STRs were eliminated from further analyses, and haplotype and allele frequencies were estimated for the remaining 12 STRs. A high haplotype diversity value was found (1.000 +/- 0.017), demonstrating the usefulness and informative power of these Y-STRs for future studies on chimpanzee population genetics.  相似文献   

4.
Genetic variation of the Y chromosome in five Chibchan tribes (Bribri, Cabecar, Guaymi, Huetar, and Teribe) of Costa Rica and Panama was analyzed using six microsatellite loci (DYS19, DYS389A, DYS389B, DYS390, DYS391, and DYS393), the Y-chromosome-specific alphoid system (alphah), the Y-chromosome Alu polymorphism (YAP), and a specific pre-Columbian transition (C-->T) (M3 marker) in the DYS 199 locus that defines the Q-M3 haplogroup. Thirty-nine haplotypes were found, resulting in a haplotype diversity of 0.937. The Huetar were the most diverse tribe, probably because of their high levels of interethnic admixture. A candidate founder Y-chromosome haplotype was identified (15.1% of Chibchan chromosomes), with the following constitution: YAP-, DYS199*T, alphah-II, DYS19*13, DYS389A*17, DYS389B*10, DYS390*24, DYS391*10, and DYS393*13. This haplotype is the same as the one described previously as one of the most frequent founder paternal lineages in native American populations. Analysis of molecular variance indicated that the between-population variation was smaller than the within-population variation, and the comparison with mtDNA restriction data showed no evidence of differential structuring between maternally and paternally inherited genes in the Chibchan populations. The mismatch-distribution approach indicated estimated coalescence times of the Y chromosomes of the Q-M3 haplogroup of 3,113 and 13,243 years before present; for the mtDNA-restriction haplotypes the estimated coalescence time was between 7,452 and 9,834 years before present. These results are compatible with the suggested time for the origin of the Chibchan group based on archeological, linguistic, and genetic evidence.  相似文献   

5.
To investigate the origin of Koreans, we examined the 12-locus Y-chromosome short tandem repeat (Y-STR) variation in a sample of 310 unrelated males from three localities (Gochang, Andong and Geoje) in Korea and statistically analyzed the previously published four Y-STR databases (n = 1655) of Korean population. The median joining network of 9-locus Y-STR haplotypes inferred as haplogroup O2b-SRY+465 showed a “star cluster” indicative of a population expansion from a centrally positioned haplotype. The central haplotype in the “star cluster” was the most frequently occurring Y-STR haplotype among the Korean male gene pool (6%, 127 of 1965, 10,14,12,13,14,16,13,13,23, for loci DYS391, DYS389I, DYS439, DYS438, DYS437, DYS19, DYS392, DYS393, and DYS390), which was shared among all seven datasets. Based on the “star cluster” pattern from both our data (41%, 128 of 310) and those previously published (34%, 563 of 1655), we suggest that the most frequent Y-STR haplotype among the Korean male gene pool seems to be the Korean modal (ancestral) haplotype. Further study with additional Y-STR and Y-SNP data of the east Asian populations as well as Korean population are needed to providing a genetic clue for the “star cluster” (O2b-SRY+465) associated with the ethnohistoric events of the Koreans.  相似文献   

6.
Population Genetics of Y-Chromosome Short Tandem Repeats in Humans   总被引:8,自引:0,他引:8  
Eight human short tandem repeat polymorphisms (STRs) also known as microsatellites—DYS19, DYS388, DYS390, DYS391, DYS392, DYS393, DYS389I, and DYS389II, mapping in the Y chromosome—were analyzed in two Iberian samples (Basques and Catalans). Allele frequency distributions showed significant differences only for DYS392. Fst and gene diversity index (D) were estimated for the Y STRs. The values obtained are comparable to those of autosomal STR if corrections for the smaller effective population size on the Y chromosome are taken into account. This suggests that Y-chromosome microsatellites might be as useful as their autosomal counterparts to both human population genetics and forensics. Our results also reinforce the hypothesis that selective sweeps in the Y chromosome in recent times are unlikely. Haplotypes combining five of the loci were constructed for 71 individuals, showing 29 different haplotypes. A haplotype tree was constructed, from which an estimate of 7,000 to 60,000 years for the age of the Y-chromosome variation in Iberia was derived, in accordance with previous estimates obtained with mtDNA sequences and nuclear markers. Received: 3 January 1997 / Accepted: 25 April 1997  相似文献   

7.
To assess the paternal history of the Mbyá-Guaraní Amerindians of northeast Argentina, we examined the genetic variation in seven Y-chromosome loci: the binary marker M3 at locus DYS199, and six short tandem repeats (DYS19, DYS389I, DYS389II, DYS390, DYS391, and DYS393). The most striking finding is the high frequency among the Mbyá-Guaraní of Q3 lineages with the usually rare alleles DYS391*11 and DYS393*11, which could be the result of a founder effect, given the recent history of the population.  相似文献   

8.
Autosomal STRs, Y-chromosome markers, and mitochondrial DNA sequences were investigated in six Mbyá-Guaraní villages (Fortín M'Bororé, Yryapu, Tabay, Kaaguy Poty, Jejy, and Yaboti), all of them settled within the province of Misiones, northeastern Argentina. One hundred twenty-one unrelated individuals were analyzed. The study involved typing fifteen autosomal STRs, nine Y-chromosome STRs, and four biallele loci in the nonrecombinant region of the Y chromosome, sequencing the mtDNA of hypervariable regions I and II, and detecting the 9-bp ins/del in region V of mtDNA. All autosomal STRs were in Hardy-Weinberg equilibrium. The four major native American mtDNA haplogroups were represented in the sample. Haplogroups A2 and D1 exhibited the highest frequencies (40.5% and 36.0%, respectively), and haplogroups B2 and C1 appeared to be less frequent (17.5% and 6.0%, respectively). The native American haplogroup Q1a3a was observed in a relevant proportion (88.8%). In addition, a nine-STR Y-chromosome haplo-type (DYS19*13, DYS389I*14, DYS389II*31, DYS390*24, DYS391*11, DYS392*14, DYS393*11, DYS385A*14, DYS385B*16) exhibited a frequency of more than 36%. Our results indicate that the analyzed Argentinean Guaraní individuals are genetically more closely related to Guaraní from Brazil [genetic distance (Δμ)(2) = 0.48] than to other related tribes that are geographically closer. Statistical approaches based on autosomal data do not support the hypothesis of genetic drift previously proposed; however, this apparent discrepancy might be due to the lack of sensitivity of the autosomal markers used here.  相似文献   

9.
Fifty unrelated Basque males from southwest Idaho were typed for the 17 Y-STR loci in the Yfiler multiplex kit (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, YGATA H4.1 and DYS385a/b). In total, 42 haplotypes were identified, with no more than two individuals sharing a single haplotype. The haplotype diversity (HD) was 0.9935, and gene diversity (D) over loci was 0.457 ± 0.137. The Idaho Basque population was compared to the source population from the Basque autonomous region of Northern Spain and Southern France, as well as a United States Caucasian population. The haplotype diversity for the immigrant Basque sample is within 0.4% of the haplotype diversity of the European Basques (0.9903); thus the power of discrimination is similar for each population. The Idaho Basque population has less diversity in 9 out of 16 loci (considering DYS385a/b together) and 3% less diversity across all loci, compared to the European Basque population. A multidimensional scaling analysis (MDS) was created using pairwise R(ST) values to compare the Idaho Basques to other populations. Based upon R(ST) and F(ST) measures, no significant differentiation was found between the Idaho and source European Basque population.  相似文献   

10.
Y-chromosome-specific microsatellite variation in Australian aboriginals   总被引:3,自引:0,他引:3  
The frequency distributions of 4 highly polymorphic Y-chromosome-specific microsatellites (DYS19, DYS390, DYS391, and DYS392) were determined in 79 unrelated Australian Aboriginal males from the Northern Territory. These results are compared with those observed in worldwide populations at both the locus and the haplotype level. Common alleles in Aboriginals are DYS19*15 (49%), DYS19*14 (28%), DYS390*19 (39%), DYS390*24 (20%), DYS391*10 (72%), DYS392*11 (63%), and DYS392*13 (28%). No evidence of reduced gene diversity was observed for these Y-chromosome alleles. DYS390 exhibits the most complex arrangement, displaying a bimodal distribution composed of common alleles (*22-*26), and rare short alleles (*18-*20), with an intermediate allele (*21) being absent. DYS390*20, previously reported only in Papuans and Samoans, is observed for the first time in Aboriginals. Compared with a recent study of Aboriginals, our sample exhibits considerable diversity in the haplotypes associated with the rare DYS390*19 allele, indicating that this allele is of considerable antiquity, if it arose as a single deletion event. Combining all 4 Y-chromosome-linked microsatellites produced 41 unique haplotypes, which were linked using a median-joining network. This network shows that most (78%) of our Aboriginal haplotypes fall into 2 distinct clusters, which likely represent 2 separate lineages. Seven haplotypes are shared with haplotypes found in a recent study of Aboriginals, and 7 are shared with a Spanish population. The cluster of Aboriginal haplotypes associated with the short DYS390 alleles does not share any haplotypes with the Spanish, indicating that this cluster of haplotypes is unique to Australian Aboriginals. Limited data from 4 worldwide populations used to construct haplotypes based on 3 loci (DYS19, DYS390, DYS392) show that only 4 of these haplotypes are seen in Australian Aboriginals. Shared haplotypes may be the result of admixture and/or recurrent mutation at these loci. Expanding the haplotype analysis to include biallelic markers on the Y chromosome will resolve this issue.  相似文献   

11.
广东汉族22个Y-STR基因座遗传多态性及遗传关系分析   总被引:4,自引:0,他引:4  
石美森  百茹峰  于晓军  唐剑频 《遗传》2008,30(9):1136-1142
调查了广东汉族群体22个 Y-STR基因座的遗传多态性分布情况, 探讨其群体遗传学及法医学应用价值。通过自行建立的两组Y-STR荧光标记复合扩增体系(MultiplexⅠ: DYS505, DYS533, DYS576, DYS588, DYS634, DYS643; MultiplexⅡ: DYS461, DYS481, DYS504, DYS508, DYS607)和应用进口Powerplex Y System (DYS19, DYS389Ⅰ/Ⅱ, DYS390, DYS391, DYS392, DYS393, DYS385, DYS437, DYS438, DYS439), 对广东汉族216 名无关男性个体进行22 个STR基因座的复合分型, 用ABI310基因分析仪对扩增产物进行检测, 统计22 个Y-STR基因座的群体遗传学参数, 并结合已公开发表的其他12 个群体“扩展单倍型”的数据资料, 分析广东汉族群体遗传距离和聚类关系。3 组复合扩增系统均可成功进行分型, 基因多样性GD值在0.3299(DYS634)~ 0.9425(DYS385); 22 个Y-STR基因座共同构成的单倍型214 种, 单倍型多样性为0.9999。广东汉族和潮汕汉族的遗传距离最近(-0.0030), 与东北汉族的遗传距离最远(0.0195)。22 个Y-STR基因座联合检测具有丰富的遗传多态性, 对建立Y染色体STR数据库, 研究群体遗传学和进行法医学应用有重要意义。  相似文献   

12.
To evaluate sex-specific differences in gene flow between Native American populations from South America and between those populations and recent immigrants to the New World, we examined the genetic diversity at uni- and biparental genetic markers of five Native American populations from Colombia and in published surveys from native South Americans. The Colombian populations were typed for five polymorphisms in mtDNA, five restriction sites in the beta-globin gene cluster, the DQA1 gene, and nine autosomal microsatellites. Elsewhere, we published results for seven Y-chromosome microsatellites in the same populations. Autosomal polymorphisms showed a mean G(ST) of 6.8%, in agreement with extensive classical marker studies of South American populations. MtDNA and Y-chromosome markers resulted in G(ST) values of 0.18 and 0.165, respectively. When only Y chromosomes of confirmed Amerind origin were used in the calculations (as defined by the presence of allele T at locus DYS199), G(ST) increased to 0.22. G(ST) values calculated from published data for other South American natives were 0.3 and 0.29 for mtDNA and Amerind Y chromosomes, respectively. The concordance of these estimates does not support an important difference in migration rates between the sexes throughout the history of South Amerinds. Admixture analysis of the Colombian populations suggests an asymmetric pattern of mating involving mostly immigrant men and native women.  相似文献   

13.
Y-chromosome short tandem repeats (STRs) are potentially useful for forensic, anthropological and evolutionary studies. In this study we chose the loci DYS 19, DYS 388, DYS 389 I, DYS 389 II, DYS 390, DYS 391, DYS 392, DYS 393, DYS 425 and DYS 426. Blood samples were taken from 46 unrelated male individuals from Fujian Han and 43 unrelated males from Sichuan Han in China. DNA was extracted by conventional chelex extraction procedure. PCR was carried out in two multiplex reactions. Fragment analysis was conducted on an ABI PRISM 310 Genetic Analyzer. Allele frequency distributions and discrimination indices were calculated, and the two populations were tested for genetic differences by means of analysis of molecular variance (AMOVA). Here we obtained 75 Y-STR haplotypes and the haplotype diversity for the complete haplotype was 0.9884 in Fujian Han and 0.9967 in Sichuan Han. A larger genetic difference became apparent between the two populations that belong to the Sino-Tibetan speaking populations.  相似文献   

14.
Haplotype frequencies and allele distributions at 11 STR loci of the Y chromosome were evaluated in 180 unrelated individuals from Russian population of Southern Federal district of the Russian Federation (Rostov oblast, Krasnodar krai, and Stavropol krai). Among 153 Y-chromosomal haplotypes discovered, 62 were unique. In the sample of Russian population, the most frequent haplotype (frequency of 5.56%) was 16-11,14-13-30-25-11-11-13-14-11-10 (for the loci DYS19, DYS385a,b, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, and DYS439, respectively). Despite the high diversity of Y-chromosomal haplotypes in the Russian populations from the south of Russia (the h value was 0.997, 0.995, and 0.994 in Rostov, Krasnodar, and Stavropol samples, respectively), analysis of molecular variance (AMOVA) showed the absence of differentiation between the populations (ΦST = 0.1%, P = 0.36). Comparative differentiation analysis performed for 13 Russian populations from the European part of Russia pointed to low among-population differentiation in Y-chromosomal lineages (ΦST = 0.52%, P = 0.03).  相似文献   

15.
The study aimed at development of a multiplex PCR system for amplification of three Y-chromosome STR loci: DYS390, DYS392 and DYS393, and its application in haplotype polymorphism analysis in the population of northern Poland. Due to interactions between originally published primers, a new DYS392 primer pair was proposed. In a population of 158 unrelated males, 28 different haplotypes could be observed, 12 of which were seen only once. The haplotype diversity is 0.805. Distribution of haplotypes of the studied loci is specific to the population of northern Poland and distinguishes it from compared West-European populations. To our knowledge, this is the first report on a Y-STR multiplex system that can be analysed on native polyacrylamide gels.  相似文献   

16.
Eight Y-linked short-tandem-repeat polymorphisms (DYS19, DYS388, DYS389I, DYS389II, DYS390, DYS391, DYS392, and DYS393) were analyzed in four populations of Central Asia, comprising two lowland samples-Uighurs and lowland Kirghiz-and two highland samples-namely, the Kazakhs (altitude 2,500 m above sea level) and highland Kirghiz (altitude 3,200 m above sea level). The results were compared with mtDNA sequence data on the same individuals, to study possible differences in male versus female genetic-variation patterns in these Central Asian populations. Analysis of molecular variance (AMOVA) showed a very high degree of genetic differentiation among the populations tested, in discordance with the results obtained with mtDNA sequences, which showed high homogeneity. Moreover, a dramatic reduction of the haplotype genetic diversity was observed in the villages at high altitude, especially in the highland Kirghiz, when compared with the villages at low altitude, which suggests a male founder effect in the settlement of high-altitude lands. Nonetheless, mtDNA genetic diversity in these highland populations is equivalent to that in the lowland populations. The present results suggest a very different migration pattern in males versus females, in an extended historical frame, with a higher migration rate for females.  相似文献   

17.
Jochens A  Caliebe A  Rösler U  Krawczak M 《Genetics》2011,189(4):1403-1411
The rate of microsatellite mutation is dependent upon both the allele length and the repeat motif, but the exact nature of this relationship is still unknown. We analyzed data on the inheritance of human Y-chromosomal microsatellites in father-son duos, taken from 24 published reports and comprising 15,285 directly observable meioses. At the six microsatellites analyzed (DYS19, DYS389I, DYS390, DYS391, DYS392, and DYS393), a total of 162 mutations were observed. For each locus, we employed a maximum-likelihood approach to evaluate one of several single-step mutation models on the basis of the data. For five of the six loci considered, a novel logistic mutation model was found to provide the best fit according to Akaike's information criterion. This implies that the mutation probability at the loci increases (nonlinearly) with allele length at a rate that differs between upward and downward mutations. For DYS392, the best fit was provided by a linear model in which upward and downward mutation probabilities increase equally with allele length. This is the first study to empirically compare different microsatellite mutation models in a locus-specific fashion.  相似文献   

18.
This study reevaluates the hypothesis in Demarchi et al. (2001 Am. J. Phys. Anthropol. 115:199-203) that Gran Chaco peoples demonstrate a unique pattern of genetic diversity due to a distinct regional population history. Specifically, they found populations in the central part of the Gran Chaco, or Central Chaco, to have higher within- and lower between-population mitochondrial DNA (mtDNA) haplogroup frequency variation compared to populations in other South American regions. To test this hypothesis of regional uniqueness, we applied analytical and simulation methods to mtDNA first hypervariable (HVI) region sequence data from a broad set of comparative South and Central American population samples. Contrary to the results of Demarchi et al. (2001 Am. J. Phys. Anthropol. 115:199-203), we found that the Gran Chaco's regional within-population diversity is about average among regions, and populations are highly differentiated from each other. When we limited the scale of analysis to the Central Chaco, a more localized subregion of the Gran Chaco, our results fell more in line with the original findings of Demarchi et al. (2001 Am. J. Phys. Anthropol. 115:199-203). Still, we conclude that neither the Gran Chaco regional pattern, nor the Central Chaco subregional pattern, is unique within South America. Nonetheless, the Central Chaco pattern accords well with the area's history, including pre-European contact lifeways and the documented historical use of the area as an interregional crossroads. However, we cannot exclude post-European contact disruption of traditional mating networks as an equally plausible explanation for the observed diversity pattern. Finally, these results additionally inform broader models of South American genetic diversity. While other researchers proposed an east-west continental division in patterns of genetic variation (e.g., Fuselli et al. 2003 Mol. Biol. Evol. 20:1682-1691), we found that in the geographically intermediate Central Chaco, a strict east-west divide in genetic variation breaks down. We suggest that future genetic characterizations of the continent, and subsequent interpretations of evolutionary history, involve a broad regional sampling of South American populations.  相似文献   

19.
Mitochondrial DNA from 141 individuals was typed for diagnostic restriction sites and the 9-bp region V deletion to examine the distribution of the founding mtDNA lineage haplotypes in three Amerindian populations (Mataco, Toba, and Pilagá) who currently inhabit the Argentinian part of the Gran Chaco. All four lineages were identified in the three tribes and four population samples studied. Disregarding ethnic or geographic origin, haplogroups B and D exhibit high incidence among the Gran Chaco inhabitants, whereas haplogroups A and C are present in a lower frequency. Three individuals possess none of the characteristic markers and, therefore, could not be assigned to one of those lineages. A neighbor-joining representation of F(ST) distances reflects the current geographic location of the populations, and this also corresponds to their historic distribution. After separating South America into four major regions (Tropical Forest, Andes, Gran Chaco, and Patagonia-Tierra del Fuego), the Gran Chaco populations present the highest average intragroup variability (Hs = 0.64) as well as the lowest intergroup diversity (G(')(ST) = 0.06). These findings suggest high levels of gene flow among the Chaco tribes, as well as with neighbor populations from outside the region.  相似文献   

20.
Gradients of allele frequencies have long been considered the main genetic characteristic of the European population, but mitochondrial DNA diversity seems to be distributed differently. One Alu insertion (YAP), five tetranucleotide (DYS19, DYS389B, DYS390, DYS391 and DYS393) and one trinucleotide (DYS392) microsatellite loci of the Y chromosome were analysed for geographical patterns in 59 European populations. Spatial correlograms showed clines for most markers, which paralleled the gradients previously observed for two RFLP polymorphisms. Effective separation times between populations were estimated from genetic distances at microsatellite loci. Even after correcting for the possible effects of continuous local gene flow, the most distant Indo-European-speaking populations seem to have separated no more than 7000 years ago. The clinal patterns and the estimated, recent separation times between populations jointly suggest that Y-chromosome diversity in Europe largely reflects a directional demic expansion, which is unlikely to have occurred before the Neolithic period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号