首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Earlier work on the protein import system of yeast mitochondria has identified two soluble 70 kDa protein complexes in the intermembrane space. One complex contains the essential proteins Tim9p and Tim10p and mediates transport of cytosolically-made metabolite carrier proteins from the outer to the inner membrane. The other complex contains the non-essential proteins Tim8p and Tim13p as well as loosely associated Tim9p; its function was unclear, but it interacted structurally or functionally with the Tim9p-Tim10p complex. We now show that the two 70 kDa complexes each mediate the import of a different subset of integral inner membrane proteins and that they can transfer these proteins to one of three different membrane insertion sites: the TIM22 complex, the TIM23 complex or an as yet uncharacterized insertion site. Yeast mitochondria thus use multiple pathways for escorting hydrophobic inner membrane proteins across the aqueous intermembrane space.  相似文献   

2.
Import of small Tim proteins into the mitochondrial intermembrane space   总被引:5,自引:0,他引:5  
Lutz T  Neupert W  Herrmann JM 《The EMBO journal》2003,22(17):4400-4408
Proteins of the intermembrane space (IMS) of mitochondria are typically synthesized without presequences. Little is known about their topogenesis. We used Tim13, a member of the 'small Tim protein' family, as model protein to investigate the mechanism of translocation into the IMS. Tim13 contains four conserved cysteine residues that bind a zinc ion as cofactor. Import of Tim13 did not depend on the membrane potential or ATP hydrolysis. Upon import into mitochondria Tim13 adopted a stably folded conformation in the IMS. Mutagenesis of the cysteine residues or pretreatment with metal chelators interfered with folding of Tim13 in vitro and impaired its import into mitochondria. Upon depletion of metal ions or modification of cysteine residues, imported Tim13 diffused back out of the IMS. We propose an import pathway in which (1) Tim13 can pass through the TOM complex into and out of the IMS in an unfolded conformation, and (2) cofactor acquisition stabilizes folding on the trans side of the outer membrane and traps Tim13 in the IMS, and drives unidirectional movement of the protein across the outer membrane of mitochondria.  相似文献   

3.
Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex.  相似文献   

4.
The first high-resolution structure of a mitochondrial translocase complex, the Tim9-Tim10 chaperone, is reported by Webb et al. (2006) in a recent issue of Molecular Cell, providing important insight in the transport of hydrophobic proteins through the aqueous intermembrane space and the mechanisms of protein assembly.  相似文献   

5.
Cytochrome c peroxidase, a cytoplasmically made enzyme located between the inner and outer membrane of yeast mitochondria, is synthesized as larger precursor in a reticulocyte cell-free lysate as well as in pulsed yeast spheroplasts. When the pulsed spheroplasts are chased, the precursor is converted to the mature apoprotein. When the in vitro synthesized precursor is incubated with isolated yeast mitochondria in the absence of protein synthesis, it is cleaved to the mature form; the mature form co-sediments with the mitochondria and is resistant to externally added proteases. These results, in conjunction with those reported earlier (Maccecchini, M.-L., Rudin, Y., Blobel, G., and Schatz, G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 343-347) suggest that the mechanism of protein transport into the mitochondrial intermembrane space is quite similar to that of protein transport into the matrix or the inner membrane.  相似文献   

6.
Mitochondria consist of four compartments, the outer membrane, intermembrane space (IMS), inner membrane and the matrix. Most mitochondrial proteins are synthesized as precursors in the cytosol and have to be imported into these compartments. While the protein import machineries of the outer membrane, inner membrane and matrix have been investigated in detail, a specific mitochondrial machinery for import and assembly of IMS proteins, termed MIA, was identified only recently. To date, only a very small number of substrate proteins of the MIA pathway have been identified. The substrates contain characteristic cysteine motifs, either a twin Cx(3)C or a twin Cx(9)C motif. The largest MIA substrates known possess a molecular mass of 11 kDa, implying that this new import pathway has a very small size limit. Here, we have compiled a list of Saccharomyces cerevisiae proteins with a twin Cx(9)C motif and identified three IMS proteins that were previously localized to incorrect cellular compartments by tagging approaches. Mdm35, Mic14 (YDR031w) and Mic17 (YMR002w) require the two essential subunits, Mia40 and Erv1, of the MIA machinery for their localization in the mitochondrial IMS. With a molecular mass of 14 kDa and 17 kDa, respectively, Mic14 and Mic17 are larger than the known MIA substrates. Remarkably, the precursor of Erv1 itself is imported via the MIA pathway. As Erv1 has a molecular mass of 22 kDa and a twin Cx(2)C motif, this study demonstrates that the MIA pathway can transport substrates that are twice as large as the substrates known to date and is not limited to proteins with twin Cx(3)C or Cx(9)C motifs. However, tagging of MIA substrates can interfere with their subcellular localization, indicating that the proper localization of mitochondrial IMS proteins requires the characterization of the authentic untagged proteins.  相似文献   

7.
Lipid trafficking is essential for biogenesis and maintenance of eukaryotic organelles. In this issue of The EMBO Journal, Saita et al ( 2018 ) revealed that proteolytic processing by the rhomboid protease PARL in the mitochondrial inner membrane facilitates partitioning of START domain‐containing protein STARD7 to the cytosol and mitochondrial intermembrane space. STARD7 in the mitochondrial intermembrane space functions as a lipid transfer protein to shuttle phosphatidylcholine from the outer membrane to the inner membrane.  相似文献   

8.
The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.  相似文献   

9.
10.
Ups1p, Ups2p, and Ups3p are three homologous proteins that control phospholipid metabolism in the mitochondrial intermembrane space (IMS). The Ups proteins are atypical IMS proteins in that they lack the two major IMS‐targeting signals, bipartite presequences and cysteine motifs. Here, we show that Ups protein import is mediated by another IMS protein, Mdm35p. In vitro import assays show that import of Ups proteins requires Mdm35p. Loss of Mdm35p led to a decrease in steady state levels of Ups proteins in mitochondria. In addition, mdm35Δ cells displayed a similar phenotype to ups1Δups2Δups3Δ cells. Interestingly, unlike typical import machineries, Mdm35p associated stably with Ups proteins at a steady state after import. Demonstrating that Mdm35p is a functional component of Ups–Mdm35p complexes, restoration of Ups protein levels in mdm35Δ mitochondria failed to restore phospholipid metabolism. These findings provide a novel mechanism in which the formation of functional protein complexes drives mitochondrial protein import.  相似文献   

11.
The mitochondrial inner membrane contains numerous multispanning integral proteins. The precursors of these hydrophobic proteins are synthesized in the cytosol and therefore have to cross the mitochondrial outer membrane and intermembrane space to reach the inner membrane. While the import pathways of noncleavable multispanning proteins, such as the metabolite carriers, have been characterized in detail by the generation of translocation intermediates, little is known about the mechanism by which cleavable preproteins of multispanning proteins, such as Oxa1, are transferred from the outer membrane to the inner membrane. We have identified a translocation intermediate of the Oxa1 preprotein in the translocase of the outer membrane (TOM) and found that there are differences from the import mechanisms of carrier proteins. The intermembrane space domain of the receptor Tom22 supports the stabilization of the Oxa1 intermediate. Transfer of the Oxa1 preprotein to the inner membrane is not affected by inactivation of the soluble TIM complexes. Both the inner membrane potential and matrix heat shock protein 70 are essential to release the preprotein from the TOM complex, suggesting a close functional cooperation of the TOM complex and the presequence translocase of the inner membrane. We conclude that mitochondria employ different mechanisms for translocation of multispanning proteins across the aqueous intermembrane space.  相似文献   

12.
Mitochondria import nuclear-encoded precursor proteins to four different subcompartments. Specific import machineries have been identified that direct the precursor proteins to the mitochondrial outer membrane, inner membrane or matrix, respectively. However, a machinery dedicated to the import of mitochondrial intermembrane space (IMS) proteins has not been found so far. We have identified the essential IMS protein Mia40 (encoded by the Saccharomyces cerevisiae open reading frame YKL195w). Mitochondria with a mutant form of Mia40 are selectively inhibited in the import of several small IMS proteins, including the essential proteins Tim9 and Tim10. The import of proteins to the other mitochondrial subcompartments does not depend on functional Mia40. The binding of small Tim proteins to Mia40 is crucial for their transport across the outer membrane and represents an initial step in their assembly into IMS complexes. We conclude that Mia40 is a central component of the protein import and assembly machinery of the mitochondrial IMS.  相似文献   

13.
The presequence of yeast cytochrome c1 (an inner membrane protein protruding into the intermembrane space) contains a matrix-targeting domain and an intramitochondrial sorting domain. This presequence transports attached subunit IV of cytochrome c oxidase into the intermembrane space (van Loon et al. (1987) EMBO J., 6, 2433-2439). In order to determine how this fusion protein reaches the intermembrane space, we studied the kinetics of its import into isolated mitochondria or mitoplasts and its accumulation in the various submitochondrial compartments. The imported, uncleaved fusion precursor and a cleavage intermediate were bound to the inner membrane and were always exposed to the intermembrane space; they were never found at the matrix side of the inner membrane. In contrast, analogous import experiments with the authentic subunit IV precursor, or the precursor of the iron-sulphur protein of the cytochrome bc1 complex also an inner membrane protein exposed to the intermembrane space), readily showed that these precursors were initially transported across both mitochondrial membranes. We conclude that the intramitochondrial sorting domain within the cytochrome c1 presequence prevents transport of attached proteins across the inner, but not the outer membrane: it is a stop-transfer sequence for the inner membrane. Since the presequence of the iron-sulphur protein lacks such 'stop-transfer' domain, it acts by a different mechanism.  相似文献   

14.
Mitochondria, despite their function in cellular energy metabolism, play an important role in the apoptotic signaling pathways. These organelles in response to the death signal undergo changes resulting in the release of proteins which are essential to conduct apoptosis via mitochondrial pathway. This article is focused on the properties and functions of apoptogenic proteins released from the mitochondrial intermembrane space, i.e., caspases, cytochrome c, Smac/DIABLO, serine protease Omi/HtrA2, AIF and endonuclease G.  相似文献   

15.
16.
The release of proapoptotic proteins from the intermembrane space of mitochondria is an early critical step in many pathways to apoptosis. Induction of the mitochondrial permeability transition pore (PTP) was suggested to be the mechanism of the release of soluble mitochondrial intermembrane proteins (SIMP) in apoptosis. However, several studies suggested that proapoptotic proteins (e.g. Bax and Bid) can induce the release of SIMP (e.g. cytochrome c (cyt c) and adenylate kinase 2 (AK2)) in vivo and in vitro independent of PTP. We have found that a number of structurally diverse polycations, such as aliphatic polyamines (e.g. spermine and to a lesser extent spermidine), aminoglycosides (e.g. streptomycin, gentamicin and neomycin), and cytotoxic peptides (e.g. melittin), induce the release of SIMP from liver mitochondria, in vitro. All the polycations released AK2 together with cyt c, suggesting that rupture of the outer membrane is a common mechanism of cyt c release by these polycations. Several polycations (e.g. spermine, spermidine and neomycin) induced SIMP release without inducing significant swelling, and this release was not inhibited significantly by the PTP inhibitor cyclosporin. In contrast, under the same conditions, streptomycin and melittin induced swelling and SIMP release that was inhibited strongly by cyclosporin. Gentamicin-induced swelling and release of SIMP were partially inhibited by cyclosporin. The affinity of polyamines to the anionic phospholipids of the mitochondrial membranes (spermine=neomycin>gentamicin>streptomycin=spermidine) correlated roughly with their ability to induce PTP-independent release of SIMP, which suggests that the binding of polycations to the anionic phospholipids of the outer mitochondrial membrane facilitates the rupture of this membrane. However, some polycations facilitated the induction of PTP, possibly by binding to cardiolipin on the inner membrane. This dual mechanism may be relevant to the induction of SIMP release in apoptosis.  相似文献   

17.
Protein translocation pathways to the mitochondrial matrix and inner membrane have been well characterized. However, translocation into the intermembrane space, which was thought to be simply a modification of the traditional translocation pathways, is complex. The mechanism by which a subset of intermembrane space proteins, those with disulfide bonds, are translocated has been largely unknown until recently. Specifically, the intermembrane space proteins with disulfide bonds are imported via the mitochondrial intermembrane space assembly (MIA) pathway. Substrates are imported via a disulfide exchange relay with two components Mia40 and Erv1. This new breakthrough has resulted in novel concepts for assembly of proteins in the intermembrane space, suggesting that this compartment may be similar to that of the endoplasmic reticulum and the prokaryotic periplasm. As a better understanding of this pathway emerges, new paradigms for thiol-disulfide exchange mechanisms may be developed. Given that the intermembrane space is important for disease processes including apoptosis and neurodegeneration, new roles in regulation by oxidation-reduction chemistry seem likely to be relevant.  相似文献   

18.
This work demonstrates how increased activity of copper-zinc superoxide dismutase (SOD1) paradoxically boosts production of toxic reactive oxygen species (ROS) in the intermembrane space (IMS) of mitochondria. Even though SOD1 is a cytosolic enzyme, a fraction of it is found in the IMS, where it is thought to provide protection against oxidative damage. We found that SOD1 controls cytochrome c-catalyzed peroxidation in vitro when superoxide is available. The presence of SOD1 significantly increased the rate of ROS production in mitoplasts, which are devoid of outer membrane and IMS. In response to inhibition of respiration with antimycin A, isolated mouse wild-type mitochondria increased ROS production, but the mitochondria from mice lacking SOD1 (SOD1(-/-)) did not. Also, lymphocytes isolated from SOD1(-/-) mice produced significantly less ROS than did wild-type cells and were more resistant to apoptosis induced by inhibition of respiration. Moreover, an increased amount of the toxic mutant G93A SOD1 in the IMS increased ROS production. The mitochondrial dysfunction and cell damage paradoxically induced by SOD1-mediated ROS production may be implicated in chronic degenerative diseases.  相似文献   

19.
The intermembrane compartment of rat liver mitochondria contains high molecular weight compounds, most likely proteins, complexing magnesium ions. Compound/s/ of about 150 000 daltons has a low affinity /Kd 0.37 mM/ and a high binding capacity of 300 ng atoms Mg/mg protein; compound/s/ of about 100 000 daltons is characterized by a very high affinity towards magnesium /Kd of the order of magnitude of 0.001 mM/ and a low capacity of about 20 ng atoms Mg/mg protein.  相似文献   

20.
《Molecular cell》2023,83(12):2045-2058.e9
  1. Download : Download high-res image (212KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号