首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In order to evaluate in mathematical terms the morphological changes occurring in the course of cell spreading, Fourier analysis of shape was applied. Human urothelial Hu 961 b cells plated on type IV collagen, fibronectin, laminin, glass and bovine serum albumine (BSA) were studied. Fourier parameters describing cell shape as well as surface areas covered by the cells on the substrate were subjected to statistical analysis. Using analysis of variance and discriminant analysis it was found that parameters describing cell shape (both gross shape of cells and their fine scale contour foldings) possessed a higher power of discrinunation between the cells spread on various substrates than the differences in cell surface areas. In the course of observation (75 and 150 min) the highest number of attached cells and highest degree of spreading were found when cells were plated on type IV collagen. Moderate alterations in cell shape and moderate increase of surface area were seen in the group of cells seeded on fibronectin, whereas the cells plated on laminin, glass and BSA revealed a moderate increase of surface area, but no changes in their shape were observed. The differences in attachment of cells and in the degree of their spreading might be due to the variation in expression of plasma membrane receptors for various substrates. The Fourier analysis of cell shape coupled with measurement of surface area is a good tool for quantitative evaluation of cell spreading and can be used for discrimination between cells spread on different substrates.Supported in part by a grant (MZ-XIV) from the Polish Ministry of Health and Welfare  相似文献   

2.
Cell surface galactosyltransferase (GalTase) has been previously shown to mediate cell spreading or migration on laminin matrices. This work demonstrates that 3T3 cell surface GalTase also mediates cell attachment to collagen type IV. Attachment to collagen type IV was blocked by perturbations of GalTase or substrate pregalactosylation on cells possessing only calcium-dependent mechanisms of adhesion. Cells with both calcium-dependent and calcium-independent systems were not affected by GalTase perturbation. Collagen type IV was shown to possess GalTase substrates since matrices could be galactosylated by both soluble enzyme and 3T3 cells.  相似文献   

3.
We have examined the interaction of adult rat hepatocytes in primary culture, to type IV collagen, fibronectin, and laminin, the major basement membrane proteins of normal rat liver. Culture substrata consisted of glass coverslips, which were covalently derivatized with individual purified basement membrane constituents at varying densities of protein. The attachment of freshly prepared hepatocytes was examined after incubation at 37 degrees C for 30 min as a function of the amount of protein on the coverslips. For each of the three types of substratum under study, distinct modes of cell attachment were observed, with the apparent affinity of hepatocytes for type IV collagen being three-fold greater than for fibronectin and ten-fold greater than for laminin. Cell attachment exhibited saturation on all substrata. Hepatocyte spreading was measured by scanning electron microscopy of cells incubated at 37 degrees for 2 h on similarly prepared coverslips. A five-fold greater surface density of type IV collagen was required for maximal spreading compared with attachment. For cells on fibronectin or laminin the maximal cell spreading reached on type IV collagen did not occur even at coverslip protein densities 10 to 20 times those providing for maximal cell attachment. A very similar qualitative pattern of cell proteins was secreted within a few hours of plating on the various substrata and further studies failed to reveal any evidence that attachment and spreading was mediated by endogenously produced matrix molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We characterized β1 integrin subunit expression on three different cultures of benign human nevomelanocytes (NMC) and on four different cell cultures of human dysplastic nevus (DN) cells by flow cytometry analysis and examined their role in mediating cell spreading and migration on collagen type IV (CN IV) and laminin (LN) coated substrates by using a quantitative video image analysis system. The seven human NMC and DNC cultures expressed heterogeneous levels of β1, α2, α3 and α6 integrin subunits. Image analysis showed that a significant increase (P<0.001) in cell spreading and migration of the DN cells was induced on increasing coating concentrations of CN IV and LN. However, the NMC did not show an increase in cell spreading or migration on these substrates when compared to the substrates coated with denatured BSA only. The CN IV-induced cell spreading of the DN cells was significantly inhibited by anti-β1 mAb (AIIB2), anti-α2 mAb (P1E6), or anti-α3 mAb (P1B5), but not by mAb against α6 integrin subunit (GoH3). The DN cell spreading on LN was not significantly inhibited by these mAbs. In contrast, the migration of the DN on CN IV and LN was significantly inhibited by anti-β1 mAb, anti-α2 mAb, anti-α3 mAb and anti-α6 mAb. These data suggest that the α2 and α3 subunit are important for cell spreading of the DN on CN IV, although they are less important in cell spreading on the extracellular matrix component LN. The α2, α3 and α6 integrin subunits are important for the migration of DN cells on both CN IV and LN.  相似文献   

5.
In the continuous search for better tissue engineering scaffolds it has become increasingly clear that the substrate properties dramatically affect cell responses. Here we compared cells from a physiologically stiff tissue, melanoma, to cells isolated from a physiologically soft tissue, brain. We measured the cell line responses to laminin immobilized onto glass or polyacrylamide hydrogels tuned to have a Young’s modulus ranging from 1 to 390?kPa. Single cells were analyzed for spreading area, shape, total actin content, actin-based morphological features and modification of immobilized laminin. Both cell types exhibited stiffness- and laminin concentration-dependent responses on polyacrylamide and glass. Melanoma cells exhibited very little spreading and were rounded on soft (1, 5, and 15?kPa) hydrogels while cells on stiff (40, 100, and 390?kPa) hydrogels were spread and had a polarized cell shape with large lamellipodia. On rigid glass surfaces, spreading and actin-based morphological features were not observed until laminin concentration was much higher. Similarly, increased microglia cell spreading and presence of actin-based structures were observed on stiff hydrogels. However, responses on rigid glass surfaces were much different. Microglia cells had large spreading areas and elongated shapes on glass compared to hydrogels even when immobilized laminin density was consistent on all gels. While cell spreading and shape varied with Young’s modulus of the hydrogel, the concentration of f-actin was constant. A decrease in laminin immunofluorescence was associated with melanoma and microglia cell spreading on glass with high coating concentration of laminin, indicating modification of immobilized laminin triggered by supraphysiologic stiffness and high ligand density. These results suggest that some cell lines are more sensitive to mechanical properties matching their native tissue environment while other cell lines may require stiffness and extracellular ligand density well above physiologic tissue before saturation in cell spreading, elongation and cytoskeletal re-organization are reached.  相似文献   

6.
Attachment of cells to basement membrane collagen type IV   总被引:17,自引:8,他引:9       下载免费PDF全文
Of ten different cell lines examined, three showed distinct attachment and spreading on collagen IV substrates, and neither attachment nor spreading was enhanced by adding soluble laminin or fibronectin. This reaction was not inhibited by cycloheximide or antibodies to laminin, indicating a direct attachment to collagen IV without the need of mediator proteins. Cell-binding sites were localized to the major triple-helical domain of collagen IV and required an intact triple helical conformation for activity. Fibronectin showed preferential binding to denatured collagen IV necessary to mediate cell binding to the substrate. Fibronectin binding sites of collagen IV were mapped to unfolded structures of the major triple-helical domain and show a similar specificity to fibronectin-binding sites of collagen I. The data extend previous observations on biologically potential binding sites located in the triple helix of basement membrane collagen IV.  相似文献   

7.
Multiple mechanisms of dissociated epidermal cell spreading   总被引:5,自引:4,他引:1       下载免费PDF全文
To test the possibility that epidermal cells use a common basement membrane protein whenever they spread, in vitro experiments were conducted using trypsin-dissociated guinea pig epidermal cells and the following proteins: human serum, bovine serum albumin, serum fibronectin, Type IV collagen, laminin, and epibolin (a recently described serum glycoprotein which supports epidermal cell spreading; Stenn, K.S., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:6907.). When the cells were added to media containing the specific proteins, all the tested proteins, except for serum albumin, supported cell spreading. Added to protein-coated substrates in defined media, the cells spread on fibronectin, epibolin, and laminin-Type IV collagen, but not on albumin or whole serum. In none of these experiments were the results qualitatively affected by the presence of cycloheximide. Antibodies to a specific protein blocked cell spreading on that protein but not on the other active proteins, e.g. whereas antibodies to epibolin blocked cell spreading on epibolin, they did not affect spreading on fibronectin, collagen, or laminin. In a second assay in which the cells were allowed to adhere to tissue culture plastic before the protein-containing medium was added, the cells spread only if the medium contained epibolin. Moreover, under these conditions the spreading activity of whole serum and plasma was neutralized by antiepibolin antibodies. These results support the conclusion that dissociated epidermal cells possess multiple spreading modes which depend, in part, on the proteins of the substrate, proteins of the medium, and the sequence of cell adhesion and protein exposure.  相似文献   

8.
Macroautophagy is a major lysosomal degradation pathway for cellular components in eukaryotic cells. Baseline macroautophagy is important for quality control of the cytoplasm in order to avoid the accumulation of cytotoxic products. Its stimulation by various stressful situations, including nutrient starvation, is important in maintaining cell survival. Here we demonstrate that macroautophagy is regulated differently depending on whether HeLa cells adhere to collagen I or collagen IV, proteins typical of connective tissue and basal membrane, respectively. We observed that the basal levels of macroautophagy were higher in cells plated on collagen IV than in cells plated on collagen I or on uncoated substrate. However, the stimulation of macroautophagy by nutrient starvation, as reflected by the buildup of autophagosomes and the increase in the autophagic flux, was higher in cells plated on collagen I than in cells plated on collagen IV. These contrasting results were not due to differences in the starvation-dependent inhibition of mTOR complex 1 signaling. Interestingly, cells plated on collagen IV formed numerous focal adhesions (FAs), whereas fewer FAs were observed in cells plated on the other substrates. This implies that focal adhesion kinase (FAK) was more robustly activated by collagen IV. Silencing the expression of FAK by siRNA in cells plated on collagen IV shifted the autophagic phenotype of these cells to an "uncoated substrate autophagic phenotype" under both basal and starvation-induced conditions. Moreover, cells plated on collagen IV were less dependent on autophagy to survive in the absence of nutrients. We conclude that extracellular matrix components can modulate macroautophagy and mitigate its role in cell survival.  相似文献   

9.
《Autophagy》2013,9(1):27-39
Macroautophagy is a major lysosomal degradation pathway for cellular components in eukaryotic cells. Baseline macroautophagy is important for quality control of the cytoplasm in order to avoid the accumulation of cytotoxic products. Its stimulation by various stressful situations, including nutrient starvation, is important in maintaining cell survival. Here we demonstrate that macroautophagy is regulated differently depending on whether HeLa cells adhere to collagen I or collagen IV, proteins typical of connective tissue and basal membrane, respectively. We observed that the basal levels of macroautophagy were higher in cells plated on collagen IV than in cells plated on collagen I or on uncoated substrate. However, the stimulation of macroautophagy by nutrient starvation, as reflected by the buildup of autophagosomes and the increase in the autophagic flux, was higher in cells plated on collagen I than in cells plated on collagen IV. These contrasting results were not due to differences in the starvation-dependent inhibition of mTOR complex 1 signaling. Interestingly, cells plated on collagen IV formed numerous focal adhesions (FAs), whereas fewer FAs were observed in cells plated on the other substrates. This implies that focal adhesion kinase (FAK) was more robustly activated by collagen IV. Silencing the expression of FAK by siRNA in cells plated on collagen IV shifted the autophagic phenotype of these cells to an “uncoated substrate autophagic phenotype” under both basal and starvation-induced conditions. Moreover, cells plated on collagen IV were less dependent on autophagy to survive in the absence of nutrients. We conclude that extracellular matrix components can modulate macroautophagy and mitigate its role in cell survival.  相似文献   

10.
《The Journal of cell biology》1984,99(4):1416-1423
MDW4, a wheat germ agglutinin-resistant nonmetastatic mutant of the highly metastatic murine tumor cell line called MDAY-D2 has previously been shown to attach to fibronectin and type IV collagen, whereas MDAY- D2 and phenotypic revertants of MDW4 attached poorly to these substrates. The increased adhesiveness of the mutant cells appeared to be closely related to a lesion in cell surface carbohydrate structures. In an effort to identify the carbohydrates involved in cell attachment, glycopeptides isolated from mutant and wild-type cells as well as from purified glycoproteins were tested for their ability to inhibit the attachment of MDW4 cells to plastic surfaces coated with fibronectin, laminin, or type IV collagen. The addition of mannose-terminating glycopeptide to the adhesion assay inhibited MDW4 cell attachment to type IV collagen. In contrast, a sialylated poly N-acetyllactosamine- containing glycopeptide, isolated from wheat germ agglutinin-sensitive MDAY-D2 cells but absent in MDW4 cells, inhibited MDW4 attachment to laminin. None of the glycopeptides used in this study inhibited attachment of MDW4 cells to fibronectin-coated plastic. Peptide N- glycosidase treatment of the cells to remove surface asparagine-linked oligosaccharides inhibited MDW4 adhesion to type IV collagen, but not to laminin, and the same treatment of the wheat germ agglutinin- sensitive cells enhanced attachment to laminin. Tumor cell attachment to, and detachment from, the sublaminal matrix protein laminin and type IV collagen are thought to be important events in the metastatic process. Our results indicate that tumor cell attachment to these proteins may be partially modulated by the expression of specific oligosaccharide structures associated with the cell surface.  相似文献   

11.
We studied expression of laminin, fibronectin, and Type IV collagen in the testis by means of immunofluorescence and immunoblot analysis and also examined gene expression of fibronectin using the ribonuclease protection assay. By immunofluorescence on sections from 20-day-old rats, laminin, fibronectin, and Type IV collagen were found in the basement membrane of the seminiferous tubules and in the interstitial regions of the testis. No localization of any extracellular matrix components was found inside the sectioned cells. However, when Sertoli cells were cultured on glass coverslips, laminin and Type IV collagen were both found inside the cells, suggesting new synthesis. In cultured peritubular cells, Type IV collagen, laminin, and fibronectin were found within the cells. When examined by immunoblot analysis, freshly isolated Sertoli and peritubular cells from 20-day-old rats did not demonstrate production of laminin or fibronectin. After 5 days in culture, peritubular cells produced both laminin and fibronectin, whereas cultured Sertoli cells produced only laminin. In contrast, freshly isolated and cultured Sertoli and peritubular cells all produced Type IV collagen. Moreover, the ribonuclease protection assay indicated that the bulk of fibronectin gene expression occurs within the first 10 days of postnatal development, with lower maintenance levels occurring thereafter. These results indicate that in the testis the highest levels of expression of laminin and fibronectin occur during development and in primary cell culture, whereas expression of Type IV collagen is higher at later stages.  相似文献   

12.
Schwann cells, the myelin-forming cells of the peripheral nervous system, are surrounded by a basement membrane. Whether cultured rat Schwann cells synthesize the basement membrane-specific components, laminin and collagen type IV, and whether these components influence the adhesion, morphology, and growth of these cells have been investigated. Both laminin and collagen type IV were detected in the cytoplasm of Schwann cells by immunofluorescence. After ascorbate treatment, laminin and collagen type IV were both found in an extracellular fibrillar matrix bound to the Schwann cell surface. Laminin was further localized on the Schwann cell surface by electron microscopy using gold immunolabeling. Anti-laminin IgG-labeled gold particles were scattered over the cell surface, and linear rows of particles and small aggregates were found along the cell edges and at points of contact with other cells. When added to the culture medium, laminin acted as a potent adhesion factor, stimulating Schwann cell adhesion as much as eightfold above control levels on type IV collagen. In the presence of laminin, the cells became stellate and by 24 hr had extended long, thin processes. Laminin also stimulated cell growth in a dose-dependent manner and anti-laminin IgG completely inhibited cell attachment and growth in the absence of exogenous laminin. Thus, cultured Schwann cells synthesize laminin and collagen type IV, two major components of basement membrane, and laminin may trigger Schwann cell differentiation in vivo during early stages of axon-Schwann cell interaction before myelination.  相似文献   

13.
Cell attachment and neurite outgrowth by embryonic neural retinal cells were measured in separate quantitative assays to define differences in substrate preference and to demonstrate developmentally regulated changes in cellular response to different extracellular matrix glycoproteins. Cells attached to laminin, fibronectin, and collagen IV in a concentration-dependent fashion, though fibronectin was less effective for attachment than the other two substrates. Neurite outgrowth was much more extensive on laminin than on fibronectin or collagen IV. These results suggest that different substrates have distinct effects on neuronal differentiation. Neural retinal cell attachment and neurite outgrowth were inhibited on all three substrates by two antibodies, cell substratum attachment antibody (CSAT) and JG22, which recognize a cell surface glycoprotein complex required for cell interactions with several extracellular matrix constituents. In addition, retinal cells grew neurites on substrates coated with the CSAT antibodies. These results suggest that cell surface molecules recognized by this antibody are directly involved in cell attachment and neurite extension. Neural retinal cells from embryos of different ages varied in their capacity to interact with extracellular matrix substrates. Cells of all ages, embryonic day 6 (E6) to E12, attached to collagen IV and CSAT antibody substrates. In contrast, cell attachment to laminin and fibronectin diminished with increasing embryonic age. Age-dependent differences were found in the profile of proteins precipitated by the CSAT antibody, raising the possibility that modifications of these proteins are responsible for the dramatic changes in substrate preference of retinal cells between E6 and E12.  相似文献   

14.
Extracellular matrix regulation of intestinal epithelial differentiation may affect development, differentiation during migration to villus tips, healing, inflammatory bowel disease, and malignant transformation. Cell culture studies of intestinal epithelial biology may also depend on the matrix substrate used. We evaluated matrix effects on differentiation and proliferation in human intestinal Caco-2 epithelial cells, a model for intestinal epithelial differentiation. Proliferation, brush border enzyme specific activity, and spreading were compared in cells cultured on tissue culture plastic with interstitial collagen I and the basement membrane constituents collagen IV and laminin. Each matrix significantly increased alkaline phosphatase, dipeptidyl peptidase, lactase, sucrase-isomaltase, and cell spreading in comparison to plastic. However, the basement membrane proteins collagen IV and laminin further promoted all four brush border enzymes but inhibited spreading compared to collagen I. Proliferation was most rapid on type I collagen and slowest on laminin and tissue culture plastic. Basement membrane matrix proteins may promote intestinal epithelial differentiation and inhibit proliferation compared with interstitial collagen I.  相似文献   

15.
The properties of EHS laminin and its proteolytic fragments E8 and P1 to promote spreading of B16 F1 murine melanoma cells were studied in short-term adhesion assays. The cells exhibited similar attachment rates but distinct spread morphologies on laminin, P1, and E8 fragments. The extent of spreading and the shape of the cells were quantitatively defined by two geometrical parameters: the surface and the form factor. These parameters were computed with an automatic image analyzer. Wheat germ agglutinin (WGA), applied to laminin-coated substrates, totally blocked cell spreading, but did not modify attachment percentages. Under similar conditions, WGA partially inhibited cell spreading on the E8 fragment and had no effect on the P1 fragment. In Western blot analysis, P1 fragment, contrary to laminin and E8, did not bind WGA. Laminin galactosylation and cell treatment with alpha-lactalbumin, which should prevent cell galactosyltransferase (GalTase) from binding to N-acetylglucosamine (GlcNAc) residues of the substrate, had no effect on the spreading ability of B16 F1 cells. The role of laminin N-linked carbohydrate chains in the induction of B16 F1 cell spreading was studied further after endoglycosidase F (Endo F) treatment of the substrates. The loss of carbohydrate chains was estimated by the reduction of iodinated lectin binding and by SDS-PAGE. Endo F treatment of laminin (85% of WGA binding inhibition) and E8 (40-50%) had no effect on cell spreading. In contrast, Endo F treatment of P1 fragment (85% of Con A binding inhibition) reduced both cell surface and form factor of B16 F1 cells. These results suggest that: (i) other spreading systems may act in concert with or in place of GalTase/GlcNAc interactions, (ii) the N-linked sugar chains of P1, which are not recognized by WGA, are involved in the spreading process of B16 F1 cells on this fragment, (iii) the epitopes of E8 fragment and E8 domain in laminin which are responsible for spreading are differently masked by WGA, (iv) the binding of WGA to laminin may impair cell spreading by steric hindrance.  相似文献   

16.
Interaction of Jurkat T-lymphocytes with two extracellular matrix (ECM) proteins of the basement membrane, laminin or collagen type IV, combined with poly-L-lysine resulted in a strong adhesion, a highly increased intracellular Ca2+-concentration ([Ca2]i), as compared to cells on laminin or collagen type IV alone and in spreading of the cells. The strong adhesion was independent of an increase in [Ca2+]i, was not mediated by a beta1-integrin, and was due to charge interaction between the positively charged polyaminoacid and the negatively charged cell surface. The latter was confirmed by substitution of poly-L-lysine by other positively charged polyaminoacids. In contrast, Ca+-signalling and spreading of the cells adhering to laminin or collagen type IV combined with poly-L-lysine was completely blocked by anti-beta1 mAb. However, spreading of the cells was independent of an increase in [Ca2+]i suggesting divergent signal transduction pathways leading to Ca2+-signalling and spreading of the cells. We elucidated these signal transduction pathways by inhibition of key enzymes involved. The tyrosine kinase inhibitor genistein blocked Ca2+-signalling as well as spreading, whereas inhibitors of PKC (calphostin C, GF109203x), PLCgamma (U73122) and PLA2 (bromophenacyl-bromide (BPB), 3-[4-octadecyl)benzoyl]acrylic acid (OBAA)) selectively blocked spreading of the cells.  相似文献   

17.
The interactions between adult rat cardiac myocytes and the basement membrane components collagen type IV and laminin were investigated in attachment experiments and biosynthesis studies and by immunofluorescence staining. Adult myocytes attached equally well to native collagen type IV and laminin but did not attach to collagen type IV solubilized with pepsin (P-CIV) or to collagen type I. However, when laminin was used to coat P-CIV, attachment was enhanced. Affinity-purified antibodies against laminin inhibited the attachment of myocytes to dishes coated with native collagen type IV, indicating that cell surface-bound laminin mediated attachment of the cells to this substrate. Immunofluorescence staining of freshly isolated myocytes, using antibodies against laminin or collagen type IV, revealed the presence of laminin but not of collagen type IV on the surface of freshly isolated cells, indicating that during the isolation procedure collagen IV was removed from the cell surface. Metabolic labeling followed by immunoprecipitation demonstrated synthesis of both laminin and collagen type IV in cardiac myocytes as they progressed into culture over a 14-day period. This synthesis was accompanied by the deposition of the collagen type IV and laminin into distinctly different patterns as revealed by immunofluorescence staining. As the cells progressed into culture, newly synthesized laminin formed a network radiating from the center of the reorganizing cell into the pseudopods. The laminin was redistributed and remodeled with time in culture to form a dense layer beneath the cell. Collagen type IV was also synthesized with time in culture, but the pattern was a much finer network as opposed to the denser pattern of laminin staining. These studies demonstrate that adult cardiac myocytes synthesize and remodel the basement membrane as they adapt to the culture environment.  相似文献   

18.
Peritubular cells, prepared from seminiferous tubules from testes of 20-day-old-rats, were seeded onto different substrata and cultured under varying conditions. When plated onto polystyrene or glass surfaces, peritubular cells assumed a typical fibroblast-like cell shape and cell association pattern, together with a fibroblast-like migration behavior. They maintained high rates of proliferation even after achieving confluency. In contrast, when peritubular cells were plated onto a seminiferous tubule biomatrix (ST-biomatrix) surface, they spread to form a continuous cell layer having a myoepithelioid histotype similar to that of peritubular myoid cells in the intact seminiferous tubule. The characteristics of the myoepithelioid histotype described include a squamous, polyhedral cell shape; a cobblestone-like cell association pattern, with closely apposing or slightly overlapping cell borders, and a very low mitotic index. When peritubular cells were plated onto laminin, collagen, fibronectin, heparin, or a liver biomatrix, a fibroblast-like pattern resulted, indicating that ECM components listed and liver biomatrix are unable to substitute for ST-biomatrix in maintaining normal myoepithelioid characteristics in vitro. In cocultures of Sertoli cells plated on top of peritubular cells, the peritubular cells directly in contact with Sertoli cell aggregates developed a myoepithelioid histotype, whereas peritubular cells in regions not in direct contact had a fibroblast-like histotype. The data are discussed in relation to the possible role of cell-cell interactions, and cell-substratum interactions, in the acquisition and stabilization of the histotype of peritubular cells in the seminiferous tubule during development.  相似文献   

19.
20.
Bovine aortic and microvascular endothelial cells showed good adhesion with spreading on fibronectin or collagen IV and to a lower extent on laminin. Recognition of native laminin was due to its long arm fragment E8 and was mediated by alpha 6 integrins as demonstrated by antibody inhibition. A considerably stronger, RGD-dependent interaction was observed with the isolated laminin short arm fragment P1 previously shown to represent a cryptic cell-binding site. No adhesion was observed with the heparin-binding fragment E3. In contrast, murine microvascular endothelial cells transformed by the polyoma middle T oncogene showed preferential adherence and spreading on laminin via its E8 cell-binding site and also showed adhesion to fragment E3. Attachment to laminin fragment P1 and to collagen IV was low or negative and was never followed by spreading. These data show that the transformation of microvascular endothelial cells, which give them the property to form hemangiomas, also leads to changes in cell adhesion to extracellular matrix proteins, particularly to laminin fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号