首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of tyrosinase (Tyr) is reviewed from a double point of view. On the one hand, by comparison of all Tyr found throughout nature, from prokaryotic organisms to mammals and on the other, by comparison with the tyrosinase related proteins (Tyrps) that appeared late in evolution, and are only found in higher animals. Their structures are reviewed as a whole rather than focused on the histidine (His)‐bound metal active site, which is the part of the molecule common to all these proteins. The availability of crystallographic data of hemocyanins and recently of sweet potato catechol oxidase has improved the model of the three‐dimensional structure of the Tyr family. Accordingly, Tyr has a higher structural disorder than hemocyanins, particularly at the CuA site. The active site seems to be characterized by the formation of a hydrophobic pocket with a number of conserved aromatic residues sited close to the well‐known His. Other regions specific of the mammalian enzymes, such as the cytosolic C‐terminal tail, the cysteine clusters, and the N‐glycosylation sequons, are also discussed. The complete understanding of the Tyr copper‐binding domain and the characterization of the residues determinant of the relative substrate affinities of the Tyrps will improve the design of targeted mutagenesis experiments to understand the different catalytic capabilities of Tyr and Tyrps. This may assist future aims, from the design of more efficient bacterial Tyr for biotechnological applications to the design of inhibitors of undesirable fruit browning in vegetables or of color skin modulators in animals.  相似文献   

2.
The structure of tyrosinase (Tyr) is reviewed from a double point of view. On the one hand, by comparison of all Tyr found throughout nature, from prokaryotic organisms to mammals and on the other, by comparison with the tyrosinase related proteins (Tyrps) that appeared late in evolution, and are only found in higher animals. Their structures are reviewed as a whole rather than focused on the histidine (His)-bound metal active site, which is the part of the molecule common to all these proteins. The availability of crystallographic data of hemocyanins and recently of sweet potato catechol oxidase has improved the model of the three-dimensional structure of the Tyr family. Accordingly, Tyr has a higher structural disorder than hemocyanins, particularly at the CuA site. The active site seems to be characterized by the formation of a hydrophobic pocket with a number of conserved aromatic residues sited close to the well-known His. Other regions specific of the mammalian enzymes, such as the cytosolic C-terminal tail, the cysteine clusters, and the N-glycosylation sequons, are also discussed. The complete understanding of the Tyr copper-binding domain and the characterization of the residues determinant of the relative substrate affinities of the Tyrps will improve the design of targeted mutagenesis experiments to understand the different catalytic capabilities of Tyr and Tyrps. This may assist future aims, from the design of more efficient bacterial Tyr for biotechnological applications to the design of inhibitors of undesirable fruit browning in vegetables or of color skin modulators in animals.  相似文献   

3.
Cytochrome c oxidase contains four redox-active metal centers: two heme irons, cytochromes a and a3, and two copper ions, CuA and CuB. Due to the paucity of spectroscopic signatures for both copper sites in cytochrome c oxidase, the ligands and structures for these sites have remained ambiguous. The specific depletion of CuA from the p-(hydroxymercuri)benzoate- (pHMB-) modified cytochrome c oxidase recently reported [Gelles, J., & Chan, S. I. (1985) Biochemistry 24, 3963-3972] is herein described. Characterization of this enzyme shows that the structures of the remaining metal centers are essentially unperturbed by the CuA modification and depletion (P. M. Li, J. Gelles, and S. I. Chan, unpublished results). Copper extended X-ray absorption fine structure (EXAFS) measurements on the CuA-depleted cytochrome c oxidase reveal coordination of three (N, O) ligands and one (S, Cl) ligand at the CuB site. Comparison of EXAFS results obtained for the CuA-depleted, pHMB-modified, and "unmodified control" enzymes has allowed the deconvolution of the EXAFS in terms of the inner coordination spheres for CuA as well as CuB. On the basis of these data, it is found that the structure for the CuA site is consistent with two (N, O) ligands and two S ligands.  相似文献   

4.
Bacterial tyrosinases   总被引:2,自引:0,他引:2  
Tyrosinases are nearly ubiquitously distributed in all domains of life. They are essential for pigmentation and are important factors in wound healing and primary immune response. Their active site is characterized by a pair of antiferromagnetically coupled copper ions, CuA and CuB, which are coordinated by six histidine residues. Such a "type 3 copper centre" is the common feature of tyrosinases, catecholoxidases and haemocycanins. It is also one of several other copper types found in the multi-copper oxidases (ascorbate oxidase, laccase). The copper pair of tyrosinases binds one molecule of atmospheric oxygen to catalyse two different kinds of enzymatic reactions: (1) the ortho-hydroxylation of monophenols (cresolase activity) and (2) the oxidation of o-diphenols to o-diquinones (catecholase activity). The best-known function is the formation of melanins from L-tyrosine via L-dihydroxyphenylalanine (L-dopa). The complicated hydroxylation mechanism at the active centre is still not completely understood, because nothing is known about their tertiary structure. One main reason for this deficit is that hitherto tyrosinases from eukaryotic sources could not be isolated in sufficient quantities and purities for detailed structural studies. This is not the case for prokaryotic tyrosinases from different Streptomyces species, having been intensively characterized genetically and spectroscopically for decades. The Streptomyces tyrosinases are non-modified monomeric proteins with a low molecular mass of ca. 30kDa. They are secreted to the surrounding medium, where they are involved in extracellular melanin production. In the species Streptomyces, the tyrosinase gene is part of the melC operon. Next to the tyrosinase gene (melC2), this operon contains an additional ORF called melC1, which is essential for the correct expression of the enzyme. This review summarizes the present knowledge of bacterial tyrosinases, which are promising models in order to get more insights in structure, enzymatic reactions and functions of "type 3 copper" proteins in general.  相似文献   

5.
6.
From Nitrosomonas europaea which had been cultivated in a medium deficient in copper, cytochrome c oxidase (aa3-type) which did not have CuA was purified. The oxidase did not show the 830-nm peak and its ESR spectrum differed greatly from that of the normal enzyme, which has two copper atoms, CuA and CuB, per molecule. However, the oxidase which did not have CuA showed almost the same cytochrome c oxidizing activity as the normal oxidase.  相似文献   

7.
Structural models of the redox centres in cytochrome oxidase.   总被引:20,自引:6,他引:14       下载免费PDF全文
L Holm  M Saraste    M Wikstrm 《The EMBO journal》1987,6(9):2819-2823
Evolutionary conservation, predicted membrane topography of the subunits, and known chemical and physical properties of the catalytic metals in cytochrome oxidase provided the basis for plausible structural models of the enzyme's redox centres. Subunit II probably binds one of the copper ions (CuA) whilst subunit I is likely to bind the two haems (a and a3) and the other redox-active copper (CuB). Two cysteine and two histidine residues of subunit II are the likely ligands of CuA, forming a centre that may be structurally similar to that in azurin. The two haems may be sandwiched between two transmembranous segments of subunit I, one of which also provides a histidine ligand to CuB. A third segment may provide two more histidine ligands to the latter. The model was constructed with a 4 A Fe-Cu distance in the binuclear haem a3-CuB centre, and a 14 A distance between the haem irons. The subunit I model involves only three transmembranous helices which bind three catalytic metal groups. The fit of this model to several known physicochemical properties of the redox centres is analysed.  相似文献   

8.
Catechol oxidases (EC 1.10.3.1) catalyse the oxidation of o-diphenols to their corresponding o-quinones. These oxidases contain two copper ions (CuA and CuB) within the so-called coupled type 3 copper site as found in tyrosinases (EC 1.14.18.1) and haemocyanins. The crystal structures of a limited number of bacterial and fungal tyrosinases and plant catechol oxidases have been solved. In this study, we present the first crystal structure of a fungal catechol oxidase from Aspergillus oryzae (AoCO4) at 2.5-Å resolution. AoCO4 belongs to the newly discovered family of short-tyrosinases, which are distinct from other tyrosinases and catechol oxidases because of their lack of the conserved C-terminal domain and differences in the histidine pattern for CuA. The sequence identity of AoCO4 with other structurally known enzymes is low (less than 30 %), and the crystal structure of AoCO4 diverges from that of enzymes belonging to the conventional tyrosinase family in several ways, particularly around the central α-helical core region. A diatomic oxygen moiety was identified as a bridging molecule between the two copper ions CuA and CuB separated by a distance of 4.2–4.3 Å. The UV/vis absorption spectrum of AoCO4 exhibits a distinct maximum of absorbance at 350 nm, which has been reported to be typical of the oxy form of type 3 copper enzymes.  相似文献   

9.
P M Li  J E Morgan  T Nilsson  M Ma  S I Chan 《Biochemistry》1988,27(19):7538-7546
It has been previously reported that mild heat treatment (43 degrees C for ca. 60 min) abolishes the proton pumping activity of cytochrome c oxidase while leaving the oxidase activity and cytochromes a and a3 unperturbed [Sone, N., & Nicholls, P. (1984) Biochemistry 23, 6550-6554]. We herein describe the effects of this heat treatment on the electron paramagnetic resonance (EPR) and optical absorption signatures of the redox-active metal centers in the enzyme. We find that heat treatment of the oxidized enzyme causes a local structural perturbation at the CuA site. After heat treatment, the enzyme sample contains three subpopulations, each of which has a different structure at CuA. These include (i) native CuA, (ii) a type 2 copper species similar to the one produced by chemical modification by p-(hydroxymercuri)benzoate (pHMB) [Gelles, J., & Chan, S. I. (1985) Biochemistry 24, 3963-3972], and (iii) a novel type 1 copper species. In addition to changes at the CuA site, we find that heat treatment results in accelerated cyanide binding and the removal of subunit III. If the cytochrome c oxidase is heat treated while fully reduced, none of these changes are observed except for subunit III depletion. Furthermore, partial (CO mixed-valence derivative) reduction of the enzyme as well as ligand binding to cytochrome a3 also protects the enzyme against the heat-induced changes, indicating that the oxygen binding site plays a role in stabilizing the CuA site against structural perturbations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His44, Met90, His97, and His127, and CuB, a second degenerate octahedral geometry with the addition of Glu46. The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein.  相似文献   

11.
The nosZ genes encoding the multicopper enzyme nitrous oxide reductase of Alcaligenes eutrophus H16 and the type strain of Pseudomonas aeruginosa were cloned and sequenced for structural comparison of their gene products with the homologous product of the nosZ gene from Pseudomonas stutzeri [Viebrock, A. & Zumft, W. G. (1988) J. Bacteriol. 170, 4658-4668] and the subunit II of cytochrome-c oxidase (COII). Both types of enzymes possess the CuA binding site. The nosZ genes were identified in cosmid libraries by hybridization with an internal 1.22-kb PstI fragment (NS220) of nosZ from P. stutzeri. The derived amino acid sequences indicate unprocessed gene products of 70084 Da (A. eutrophus) and 70695 Da (P. aeruginosa). The N-terminal sequences of the NosZ proteins have the characteristics of signal peptides for transport. A homologous domain, extending over at least 50 residues, is shared among the three derived NosZ sequences and the CuA binding region of 32 COII sequences. Only three out of nine cysteine residues of the NosZ protein (P. stutzeri) are invariant. Cys618 and Cys622 are assigned to a binuclear center, A, which is thought to represent the CuA site of NosZ and is located close to the C terminus. Two conserved histidines, one methionine, one aspartate, one valine and two aromatic residues are also part of the CuA consensus sequence, which is the domain homologous between the two enzymes. The CuA consensus sequence, however, lacks four strictly conserved residues present in all COII sequences. Cys165 is likely to be a ligand of a second binuclear center, Z, for which we assume mainly histidine coordination. Of 23 histidine residues in NosZ (P. stutzeri), 14 are invariant, 7 of which are in regions with a degree of conservation well above the 50% positional identity between the Alcaligenes and Pseudomonas sequences. Conserved tryptophan residues are located close to several potential copper ligands. Trp615 may contribute to the observed quenching of fluorescence when the CuA site is occupied.  相似文献   

12.
The hyperthermoacidophilic archaeon Sulfolobus acidocaldarius has a unique respiratory system with at least two terminal oxidases. Genetic and preliminary biochemical studies suggested the existence of a unique respiratory supercomplex, SoxM. Here we show (i) that all respective genes are translated into polypeptides, and (ii) that the supercomplex can be separated from the alternative oxidase SoxABCD and in that way characterized in a catalytically competent form for the first time. It acts as a quinol oxidase and contains a total of seven metal redox centers. One of it--the blue copper protein sulfocyanin--functionally links two subcomplexes. One is a bb3-type terminal oxidase moiety containing CuA and CuB, whereas the other consists of a Rieske FeS-protein and a homolog to cytochrome b--in this case hosting two hemes As. Based on a 1:1 stoichiometry, 1 mol complex contains 6 mol Fe and 4 mol Cu. Its activity is completely inhibited by cyanide and strongly by aurachin-C and -D derivatives as inhibitors of the quinol binding site. These data suggest that the complex provides two proton pumping sites. Interestingly, subunit-II reveals an unusual pH dependence and is proposed to act as a pH sensor as well as a regulator of catalytic activity via a reversible transition between two states of the CuA ligation. This is a novel hint at how S. acidocaldarius can adapt to and survive in its extreme natural environment.  相似文献   

13.
Ground state near-infrared absorption spectra of fully reduced unliganded and fully reduced CO (a2+ CuA+ a3(2+)-CO CuB+) cytochrome c oxidase were investigated. Flash-photolysis time-resolved absorption difference spectra of the mixed-valence (a3+ CuA2+ a3(2+)-CO CuB+) and the fully reduced CO complexes were also studied. A band near 785 nm (epsilon approximately 50 M-1cm-1) was observed in the fully reduced unliganded enzyme and the CO photoproducts. The time-resolved 785 nm band disappeared on the same timescale (t1/2 approximately 7 ms) as CO recombined with cytochrome a3(2+). This band, which is attributed to the unliganded five coordinate ferrous cytochrome a3(2+), has some characteristics of band III in deoxy-hemoglobin and deoxy-myoglobin. A second band was observed at approximately 710 nm (epsilon approximately 80 M-1cm-1) in the fully reduced unliganded and the fully reduced CO complexes. This band, which we assign to the low spin ferrous cytochrome a, appears to be affected by the ligation state at the cytochrome a3(2+) site.  相似文献   

14.
Isolated cytochrome-c oxidase ligated with cyanide was titrated by Flash-Induced chemical photoREduction (FIRE) (Moody, A.J. and Rich, P.R. (1988) EBEC Short Rep. 5, 69) using cytochrome c as a redox indicator. Haem a is found to titrate in a complex manner consistent with its interacting anticooperatively with at least two other components. We assign CuB as the major interactant at neutral pH, and CuA as the minor interactant. In the pH range 7.0-8.1 the strength of the interaction with CuB is found to decrease with increasing pH, while the interaction with CuA remains essentially constant. The decrease in the interaction with CuB appears to continue above pH 8.1 such that at pH 9.2 the titration curve for haem a is only slightly distorted from an 'n = 1' shape, although it is not possible from the titration data to assess the relative contributions of CuB and CuA to the total interaction observed at pH values greater than 8.1. Haem a and CuB show similar pH-dependence and, to account for this, we present a model in which the oxidoreductions of both haem a and CuB are linked to the (de)protonation of a common acid/base group. The model predicts a pH-dependent indirect cooperative interaction between haem a and CuB in addition to the direct anticooperative interaction, thereby explaining the observed pH-dependence of the redox interaction between haem a and CuB.  相似文献   

15.
Cytochrome caa3, a cytochrome c oxidase from Thermus thermophilus, is a two-subunit enzyme containing the four canonical metal centers of cytochrome c oxidases (cytochromes a and a3; copper centers CuA and CuB) and an additional cytochrome c. The smaller subunit contains heme C and was termed the C-protein. We have cloned the genes encoding the subunits of the oxidase and determined the nucleotide sequence of the C-protein gene. The gene and deduced primary amino acid sequences establish that both the gene and the protein are fusions with a typical subunit II sequence and a characteristic cytochrome c sequence; we now call this subunit IIc. The protein thus appears to represent a covalent joining of substrate (cytochrome c) to its enzyme (cytochrome c oxidase). In common with other subunits II, subunit IIc contains two hydrophobic segments of amino acids near the amino terminus that probably form transmembrane helices. Variability analysis of the Thermus and other subunit II sequences suggests that the two putative transmembrane helices in subunit II may be located on the surface of the hydrophobic portion of the intact cytochrome oxidase protein complex. Also in common with other subunits II is a relatively hydrophilic intermembrane domain containing a set of conserved amino acids (2 cysteines and 2 histidines) which have previously been proposed by others to serve as ligands to the CuA center. We compared the subunit IIc sequence with that of related proteins. N2O reductase of Pseudomonas stutzeri, a multi-copper protein that appears to contain a CuA site (Scott, R.A., Zumft, W.G., Coyle, C.L., and Dooley, D.M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4082-4086), contains a 59-residue sequence element that is homologous to the "CuA sequence motif" found in cytochrome oxidase subunits II, including all four putative copper ligands. By contrast, subunit II of the Escherichia coli quinol oxidase, cytochrome bo, also contains a region homologous to the CuA motif, but it lacks the proposed metal binding histidine and cysteine residues; this is consistent with the apparent absence of CuA from cytochrome bo.  相似文献   

16.
Interactions of azide ion with bovine heart cytochrome c oxidase (CcO) at five redox levels (IV) to (0), obtained by zero to four electron reduction of fully oxidized enzyme CcO(IV), were monitored by infrared and visible/Soret spectra. Partially reduced CcO gave three azide asymmetric stretch band at 2040, 2016, and 2004 cm-1 for CcO(III)N3 and two at 2040 and 2016 cm-1 for CcO(II)N3 and CcO(I)N3. Resting CcO(IV) reacts with N3- to give one band at 2041 cm-1 assigned to CuB2+N3 and another at 2051 cm-1 to N3- that is associated with protein but is not bound to a metal ion. At high azide concentrations the weak association of many azide molecules with non-metal protein sites was observed at all redox levels. These findings provide direct evidence for 1) N3- binding to CuB as well as Fea3 in partially reduced enzyme, but no binding to Fea3 in fully oxidized enzyme and no binding to either metal in fully reduced enzyme; 2) a long range effect of the oxidation state of Fea or CuA on ligand binding at heme a3, but not at CuB; and 3) an insensitivity of either Fea3 or CuB ligand site to changes in ligand or oxidation state at the other site. The observed independence of the Fea3 and CuB sites provides further support for Fea3(3)+ OOH, rather than Fea3(3)+ OOCuB2+, as an intermediate in the reduction of O2 to water by the oxidase.  相似文献   

17.
The cupredoxin fold, a Greek key beta-barrel, is a common structural motif in a family of small blue copper proteins and a subdomain in many multicopper oxidases. Here we show that a cupredoxin domain is present in subunit II of cytochrome c and quinol oxidase complexes. In the former complex this subunit is thought to bind a copper centre called CuA which is missing from the latter complex. We have expressed the C-terminal fragment of the membrane-bound CyoA subunit of the Escherichia coli cytochrome o quinol oxidase as a water-soluble protein. Two mutants have been designed into the CyoA fragment. The optical spectrum shows that one mutant is similar to blue copper proteins. The second mutant has an optical spectrum and redox potential like the purple copper site in nitrous oxide reductase (N2OR). This site is closely related to CuA, which is the copper centre typical of cytochrome c oxidase. The electron paramagnetic resonance (EPR) spectra of both this mutant and the entire cytochrome o complex, into which the CuA site has been introduced, are similar to the EPR spectra of the native CuA site in cytochrome oxidase. These results give the first experimental evidence that CuA is bound to the subunit II of cytochrome c oxidase and open a new way to study this peculiar copper site.  相似文献   

18.
A J Moody  U Brandt  P R Rich 《FEBS letters》1991,293(1-2):101-105
Evidence is presented that single electron reduction is sufficient for rapid electron transfer (k greater than 20 s-1 at pH 8.0 in 0.43 M potassium EDTA) between haem a/CuA and the binuclear centre in 'fast' oxidase, whereas in 'slow' oxidase intramolecular electron transfer is slow even when both CuA and haem a are reduced (k congruent to 0.01 s-1). However, while a single electron can equilibrate rapidly between CuA, haem a and CuB in 'fast' oxidase, it seems that equilibration with haem a3 is relatively slow (k congruent to 2 s-1). Electron transfer between cytochrome c and CuA/haem a is similar for both types of enzyme (k congruent to 2.4 x 10(5) M-1.s-1).  相似文献   

19.
Residues D271, H192, H302 and N300 of L-3,4-dihydroxyphenylalanine decarboxylase (DDC), a homodimeric pyridoxal 5'-phosphate (PLP) enzyme, were mutated in order to acquire information on the catalytic mechanism. These residues are potential participants in catalysis because they belong to the common PLP-binding structural motif of group I, II and III decarboxylases and other PLP enzymes, and because they are among the putative active-site residues of structural modelled rat liver DDC. The spectroscopic features of the D271E, H192Q, H302Q and N300A mutants as well as their dissociation constants for PLP suggest that substitution of each of these residues causes alteration of the state of the bound coenzyme molecule and of the conformation of aromatic amino acids, possibly in the vicinity of the active site. This supports, but does not prove, the possibility that these residues are located in the coenzyme-binding cleft. Interestingly, mutation of each residue generates an oxidative decarboxylase activity towards L-3,4-dihydroxyphenylalanine (L-Dopa), not inherent in the wild-type in aerobiosis, and reduces the nonoxidative decarboxylase activity of L-Dopa from 3- to 390-fold. The partition ratio between oxidative and nonoxidative decarboxylation ranges from 5.7 x 10(-4) for N300A mutant to 946 x 10(-4) for H302Q mutant. Unlike wild-type enzyme, the mutants catalyse these two reactions to the same extent either in the presence or absence of O2. In addition, all four mutants exhibit an extremely low level of the oxidative deaminase activity towards serotonin with respect to wild-type. All these findings demonstrate that although D271, H192, H302 and N300 are not essential for catalysis, mutation of these residues alters the nature of catalysis. A possible relationship among the integrity of the PLP cleft, the productive binding of O2 and the transition to a closed conformational state of DDC is discussed.  相似文献   

20.
P Mitchell 《FEBS letters》1987,222(2):235-245
A new hypothetical type of redox loop is described, which translocates hydroxide instead of protons. Conventional protonmotive redox loops use carriers of protons with electrons (e.g. QH2/Q systems) to couple electron transfer to the translocation of protons. The putative hydroxidemotive redox loop uses carriers of hydroxide ions against electrons (e.g. transition-metal centres) to couple electron transfer to the translocation of hydroxide ions. This simple idea leads to the proposal of a hydroxidemotive Cu loop mechanism that may possibly be applicable to the CuA or CuB centre of cytochrome oxidase, and might thus account for the coupling of electron transfer to net proton translocation in that osmoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号