首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Slides pretreated for C-banding and stained with DAPI or CMA3 show different banding patterns in human metaphase chromosomes compared to those obtained with either standard Giemsa C-banding or fluorochrome staining alone. Human chromosomes show C-plus DA-DAPI banding after C-banding plus DAPI and enhanced R-banding after C-banding plus Chromomycin A3 staining. If C-banding preferentially removes certain classes of DNA and proteins from different chromosome domains, C-banding pre-treatment may cause a differential DNA extraction from G- and R-bands in human chromosomes, resulting in a preferential extraction of DNA included in G-bands. This hypothesis is partially supported by the selective cleavage and removal of DNA from R-bands of restriction endonuclease HaeIII with C-banding combined with DAPI or Chromomycin A3 staining. Structural factors relating to regional differences in DNA and/or proteins could also explain these results.  相似文献   

2.
An early stage of sex chromosome differentiation is reported to occur in the electric eel Eigenmannia virescens (Pisces, Sternopygidae) from populations of two tributaries of the Paraná river system (Brazil). Cytogenetic studies carried out in the two populations showed that the Mogi-Gua?u population is characterized by 2n = 38 chromosomes and undifferentiated sex chromosomes and the Tietê population presents 2n = 38 both for males and females and an XX:XY sex chromosome system. The X-chromosome is acrocentric, easily recognized by the presence of a conspicuous heterochromatin block in its distal portion; the Y-chromosome is probably one of the medium sized acrocentrics present in the male karyotype. BrdU induced R-bands of the two populations did not reveal any difference in the euchromatic regions of the chromosomes. AluI and HaeIII restriction enzyme digestion patterns and chromomycin A3 staining of the X-chromosome are presented. The possible role of heterochromatinization in the evolution of sex chromosomes in fish is discussed.  相似文献   

3.
We used a restriction endonuclease/nick translation procedure to study the ability of certain enzymes, known to cleave mouse satellite DNA in solution, to attack satellite DNA in fixed mouse chromosomes. Although AvaII and Sau96I readily attack the mouse major satellite in fixed chromosomes, BstNI and EcoRII do not normally do so, although if the heterochromatin is uncondensed as a result of culture in the presence of 5-azacytidine, BstNI can attack it. No clear evidence was obtained for digestion in situ of the minor satellite of mouse chromosomes by MspI, the only enzyme reported to cleave this satellite. Our results show that the DNA of mouse heterochromatin is not merely not extracted by certain restriction enzymes, but is actually not cleaved by them. Chromatin conformation is therefore shown to be an important factor in determining patterns of digestion of chromosomes by restriction endonucleases.by D. Schweizer  相似文献   

4.
Characterization of human chromosomal constitutive heterochromatin   总被引:2,自引:0,他引:2  
The constitutive heterochromatin of human chromosomes is evaluated by various selective staining techniques, i.e., CBG, G-11, distamycin A plus 4,6-diamidino-2-phenylindole-2-HCl (DA/DAPI), the fluorochrome D287/170, and Giemsa staining following the treatments with restriction endonucleases AluI and HaeIII. It is suggested that the constitutive heterochromatin could be arbitrarily divided into at least seven types depending on the staining profiles expressed by different regions of C-bands. The pericentromeric C-bands of chromosomes 1, 5, 7, 9, 13-18, and 20-22 consist of more than one type of chromatin, of which chromosome 1 presents the highest degree of heterogeneity. Chromosomes 3 and 4 show relatively less consistent heterogeneous fractions in their C-bands. The C-bands of chromosomes 10, 19, and the Y do not have much heterogeneity but have characteristic patterns with other methods using restriction endonucleases. Chromosomes 2, 6, 8, 11, 12, and X have homogeneous bands stained by the CBG technique only. Among the chromosomes with smaller pericentric C-bands, chromosome 18 shows frequent heteromorphic variants for the size and position (inversions) of the AluI resistant fraction of C-band. The analysis of various types of heterochromatin with respect to specific satellite and nonsatellite DNA sequences suggest that the staining profiles are probably related to sequence diversity.  相似文献   

5.
Nucleolar organizer regions (NORs) of brown trout were investigated using C-, Ag-, and restriction endonuclease banding. The presence of constitutive heterochromatin was confirmed by C-banding. Giemsa-staining, C-banding, and Ag-banding revealed great variability in the size of the short arm of the NOR-bearing chromosome. This size variation was due in some cases to NOR duplication. Restriction endonuclease digestion induced a specific banding pattern for AluI, DdeI, HaeIII, MboI, and HinfI, indicating some features about the sequence composition of the NOR-associated heterochromatin.  相似文献   

6.
Human metaphase chromosomes, fixed on slides, have beent treated with 8 different restriction endonucleases and 29 combinations of 2 restriction enzymes prior to staining with Giemsa. The endonucleases AluI and DdeI and the combinations AluI + DdeI, AluI + HaeIII, AluI + HinfI, and AluI + MboI have then been used to digest metaphase chromosomes of nine individuals with C-band variants of chromosomes 1 or 9, obtained by the CBG technique. The restriction enzyme resistant chromatin of the paracentromeric regions of chromosomes 1 and 9 has been measured and compared with the corresponding CBG-bands. The size of the enzyme resistant chromatin regions depend upon the type of enzyme(s) used. Treatment with AluI + MboI was the only digestion that acted differently on different chromosome pairs. However, within one pair of homologous chromosomes, all digestions revealed the same variations as conventional C-banding.  相似文献   

7.
The constitutive heterochromatin of the Indian muntjac (Muntiacus muntjak) was examined following digestion with various restriction endonucleases (AluI, HaeIII, HinfI, and MboI), as well as by selective fluorescence staining with distamycin A plus 4'-6-diamidino-2-phenylindole. Distinct areas within the C-bands were found to have characteristic staining patterns which were more conspicuous in the sex chromosomes. Two dot-like structures resistant to AluI were found in the X and Y1 chromosomes in the same position as the nucleolus organizer regions.  相似文献   

8.
T. Ashley 《Genetica》1990,83(1):1-7
The karyotype of moose (2n=68) is characterized by very large C-bands close to the centromeres of most chromosomes. The C-banded material represents 40% of the genome. For further characterization of the heterochromatin chromosome spreads were treated with restriction endonucleases and the restriction enzyme (Re) banding pattern was analysed. HaeIII, AluI, MboI, RsaI and HinfI produced informative Re-bands. DdeI induced an even digestion with no banding. Staining with chromomycin A3 produced bright fluorescence in regions corresponding to C-bands. Labeling with BrdUrd during late S phase differentiates four regions in the C banded area. The sequence of these regions from centromere to telomere are: late, early, late and early replicating.The authors propose the existence of five satellite DNA families with distinctive characteristics of G-C and A-T richness and different replication timing, and point out the different clusters for the endonucleases detailed above and their varying location in the chromosomes examined.  相似文献   

9.
AluI and HaeIII restriction endonuclease banding patterns were analyzed in Macaca fuscata and Cercopithecus aethiops sabaeus chromosomes. AluI produced C-negative bands in both species of monkeys, while HaeIII induced the appearance of C-negative bands on Macaca chromosomes and of simultaneous G + C bands on Cercopithecus metaphases.  相似文献   

10.
Rainbow trout chromosomes were treated with nine restriction endonucleases, stained with Giemsa, and examined for banding patterns. The enzymes AluI, MboI, HaeIII, HinfI (recognizing four base sequences), and PvuII (recognizing a six base sequence) revealed banding patterns similar to the C-bands produced by treatment with barium hydroxide. The PvuII recognition sequence contains an internal sequence of 4 bp identical to the recognition sequence of AluI. Both enzymes produced centromeric and telomeric banding patterns but the interstitial regions stained less intensely after AluI treatment. After digestion with AluI, silver grains were distributed on chromosomes labeled with [3H]thymidine in a pattern like that seen after AluI-digested chromosomes are stained with Giemsa. Similarly, acridine orange (a dye specific for DNA) stained chromosomes digested with AluI or PvuII in patterns resembling those produced with Giemsa stain. These results support the theory that restriction endonucleases produce bands by cutting the DNA at specific base pairs and the subsequent removal of the fragments results in diminished staining by Giemsa. This technique is simple, reproducible, and in rainbow trout produces a more distinct pattern than that obtained with conventional C-banding methods.  相似文献   

11.
In situ digestion of metaphase and polytene chromosomes and of interphase nuclei in different cell types ofDrosophila nasuta with restriction enzymes revealed that enzymes like AluI, EcoRI, HaeIII, Sau3a and SinI did not affect Giemsa-stainability of heterochromatin while that of euchromatin was significantly reduced; TaqI and SalI digested both heterochromatin and euchromatin in mitotic chromosomes. Digestion of genomic DNA with AluI, EcoRI, HaeIII, Sau3a and KpnI left a 23 kb DNA band undigested in agarose gels while withTaqI, no such undigested band was seen. TheAluI resistant 23 kb DNA hybridized insitu specifically with the heterochromatic chromocentre. It appears that the digestibility of heterochromatin region in genome ofDrosophila nasuta with the tested restriction enzymes is dependent on the availability of their recognition sites.  相似文献   

12.
Chromosome banding studies were performed in vendace, Coregonus albula. Original data on distribution of early and late replication regions, restriction sites (AluI, DdeI, HinfI and HaeIII) on chromosomes in this coregonid fish have been used to analyse karyotype heterochromatin differentiation. Heterochromatic bands (C-positive and not digested by restriction enzymes) have been identified as late replicating regions. Extra bands produced by the applied methods have permitted the identification of several homologous pairs. The centromeres were differentially digested by the restriction enzymes. The studied population seems to be homogenic regarding karyotype characteristics.  相似文献   

13.
Restriction Endonucleases (REs) may recognize, cleave and remove DNA from fixed chromatin producing specific chromosome banding patterns. However, the modifications produced in the chromatin fibre are not easy to evaluate and compare. The aim of the present investigation was to visualize differences resulting in the texture of the chromatin fibre from metaphase chromosomes after each digestion using digital image analysis (DIA) facilities. To this purpose, metaphase chromosomes derived from a L-929 mouse cell line were digested with different REs (AluI, HpaII and HaeIII). Since light microscopy does not permit the observation of the chromatin fibre, DIA was performed on digitalized images of metaphase chromosomes under electron microscopy. The application of a LUT (Look Up Table) within the DIA software assigns a colour to each grey level of a digital image. The results obtained using a particular LUT, which permits the discrimination of specific chromatin fibre phenotypes resulting from each digestion, are reported and compared with those obtained under the light microscope.  相似文献   

14.
Electron microscopy (EM) of whole mounted mouse chromosomes, light microscopy (LM), and agarose gel electrophoresis of DNA were used to investigate the cytological effect on chromosomes of digestion with the restriction endonucleases (REs) AluI, HinfI, HaeIII and HpaII. Treatment with AluI produces C-banding as seen by LM, cuts DNA into small fragments, and reduces the density of centromeres and disperses the chromatin of the arms as determined by EM. Treatment with HinfI produces C-banding, cuts DNA into slightly larger fragments than does AluI and increases the density of centromeres and disperses the fibres in the chromosomal arms. Exposure to HaeIII produces G- + C-banding, cuts the DNA into large fragments, and results in greater density of centromeres and reduced density of arms. Finally HpaII digestion produces G-like bands, cuts the DNA into the largest fragments found and results in greater density of centromeres and the best preservation of chromosomal arms detected by EM. These results provide evidence for: (1) REs producing identical effects in the LM (AluI and HinfI) produce different effects in the EM. (2) All enzymes appear to affect C-bands but while REs such as AluI reduce the density of these regions, other enzymes such as HpaII, HaeIII or HinfI increase their density. Conformational changes in the chromatin could explain this phenomenon. (3) The appearance of chromosomes in the EM is related to the action of REs on isolated DNA. The more the DNA is cut by the enzyme, the greater the alteration of the chromosomal ultrastructure.  相似文献   

15.
The goal of the present study was to determine if simple methods, especially hot saline solution (HSS) and MspI and HaeIII restriction endonucleases, which do not require special equipments, may be helpful in studies of genetic variability in the lady beetle, Cycloneda sanguinea. The HSS method extracted the heterochromatin region, suggesting that it is composed mostly of DNA rich in A-T base pairs. However, the X and y chromosomes were resistant to HSS banding. These bands facilitated the identification of each chromosome. In this study, we used the restriction endonucleases with different G-C base target sequences: MspI C/GGC and HaeIII GG/CC. The use of restriction enzyme MspI did not show an effect on the autosomal chromosomes. On the other hand, the sex pair showed a pale staining, to help in the recognition of these chromosomes. HaeIII produced characteristic bands which were identified all along the chromosomes, facilitating the identification of each chromosome. Based on these results, we can consider the heterochromatin being heterogeneous. The findings obtained here, using different chromosomal banding techniques, may be useful in the identification of intraspecific chomosome variability, specifically in Coccinellidae (Coleoptera) chromosomes, even without special equipment.  相似文献   

16.
The mechanism of chromosome banding induced by restriction endonucleases was analyzed by measuring the amount of radioactivity extracted from [14C]thymidine-labeled chromosomes digested first with restriction enzymes and subsequently with proteinase K and DNase I. Restriction enzymes with a high frequency of recognition sites in the DNA produced a large number of short DNA fragments, which were extracted from chromosomes during incubation with the enzyme. This loss of DNA resulted in decreased chromosomal staining, which did not occur in regions resistant to restriction enzyme digestion and thus led to banding. Subsequent digestion of chromosomes with proteinase K produced a further loss of DNA, which probably corresponded to long fragments retained in the chromosome by the proteins of fixed chromatin. Restriction enzymes induce chromatin digestion and banding in G1 and metaphase chromosomes, and they induce digestion and the appearance of chromocenters in interphase nuclei. This suggests that the spatial organization and folding of the chromatin fibril plays little or no role in the mechanism of chromosome banding.It was confirmed that the pattern of chromosome banding induced by AluI, MboI, HaeIII, DdeI, RsaI, and HinfI is characteristic for each endonuclease. Moreover, several restriction banding polymorphisms that were not found by conventional C-banding were detected, indicating that there may be a range of variability in the frequency and distribution of restriction sites in homologous chromosome regions.  相似文献   

17.
A distinct reverse (R-) banding pattern was produced on human chromosomes by digesting chromosome spreads with pancreatic deoxyribonuclease I (DNase I) in the presence of an excess of chromomycin A3 (CMA), followed by staining with Giemsa. The banding pattern corresponds with that obtained by chromomycin A3 fluorescence, and bands which fluorescence brightly with chromomycin appear darkly with Giemsa. The same relationship was observed in two plants, Scilla siberica and Ornithogalum caudatum, which have contrasting types of heterochromatin. Chromomycin bright C-bands stained darkly with the CMA/DNase I technique, whereas chromomycin negative C-bands appeared lightly stained. The digestion patterns are thought to reflect the variation in chromomycin binding capacity along the chromosome with R-bands and dark C-bands being sites which preferentially bind the antibiotic.  相似文献   

18.
AluI and BstNI restriction endonucleases were used to study cytological and biochemical effects on centromere DNA in fixed mouse chromosomes. These enzymes were employed, as it is known that AluI is incapable of attacking major satellite DNA, contrary to BstNI that is known to cut this DNA fraction into monomers of 234 bp. After digestion in situ, electrophoretic analysis was carried out to characterize the DNA purified (1) from the material remaining on the chromosomes and (2) from the material solubilized from chromosomes. The DNA was then transferred to a nylon filter and 32P-labelled major satellite DNA was used as a probe for hybridization experiments. Other preparations were simply stained with Giemsa after digestion in situ with AluI and BstNI. Our results show that although restriction endonuclease cleavage primarily depends on DNA base sequence, this factor is not always sufficient to explain nuclease-induced cytological effects. In fact, the structural organization of peculiar regions such as the centromeres of mouse chromosomes might affect cleavage efficiency when restriction enzyme digestion is performed in situ.M.L. Pardue  相似文献   

19.
Restriction endonuclease in situ digestion of metaphase chromosomes gives an opportunity to reveal strips with different structure within GC-rich pericentric heterochromatin of the domestic horse and the wild Przewalski horse. Blocks of heterochromatin, which are insensitive to HaeIII and brightly stained with chromomycin A3 after restriction enzyme digestion, are localized on the border with euchromatin in the majority of chromosomes of Equus caballus and E. przewalskii. In contrast to chromosome 5 of E. caballus, acrocentric chromosomes of E. prezewalskii which are homologous to this chromosome have RE-CMA-blocks. We discuss a possible nature of the specific heterochromatin, which is insensitive to restriction enzyme digestion, and its role in the karyotype evolution.  相似文献   

20.
A small plasmid (pAO2, 1 megadalton) carrying genes responsible for replication and colicin E1 immunity has been constructed from colicin E1 plasmid (A. Oka, K. Sugimoto, and M. Takanami, Proc. Mol. Biol. Jpn., p. 113-115, 1976). pAO2 DNA was cleaved into unique fragments with seven restriction endonucleases (R.HaeII,R.HaeIII,R.HapII,R.HhaI,R.AluI,R.HgaI, and R.HinfI). R.HaeII cleaved pAO2 DNA at two sites, R.HaeIII at four sites, R.HapII at nine sites, R.HhaI at eight sites, R-AluI at nine sites, R.HgaI at two sites, and R.HinfI at four sites, respectively. The order of HaeIII fragments of pAO2 was deduced from the physical map of colicin E1 plasmid previously reported (A. Oka and M. Takanami, Nature (London) 264:193-196, 1976). HapII, HhaI, and AluI fragments of pAO2 were assigned by analyzing overlapping sets of fragments arising upon digestion of individual HaeIII fragments with one of R.HapII, R.HhaI, or R.AluI, and upon their reciprocal digestion. The cleavage sites for R.HaeII, R.HgaI, and R.HinfI were localized on HapII, HhaI, and AluI fragments by combined digestion. On the basis of these data and estimates of the size of each fragment, a fine cleavage map of pAO2 was constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号