首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of [3H]estradiol, [3H]testosterone and [3H]progesterone with soluble proteins from porcine and calf liver were studied. The specific binding of [3H]progesterone and [3H]testosterone in calf liver cytosol seems to be due to serum transcortin or its intracellular precursor (analog). Contrariwise, the specific binding of [3H]progesterone observed in porcine liver cytosol was absent in the serum. This binding was characterized by slow association and dissociation dynamics, moderate affinity for the [3H]-ligand and a high binding capacity. The structural determinants of the ligands were studied by competitive inhibition of the [3H]-ligand binding. The delta 4-3-keto group in the steroid A-ring was found to be the most important determinant. An intensive metabolism of [3H]progesterone was observed during its incubation with cytosol (data from thin-layer chromatography). A 3H-metabolite (presumably, 20 beta-dihydroprogesterone) was predominant in the bound ligand fraction. The data obtained suggest that proteins of a steromodulin type are widely distributed in the mammalian liver.  相似文献   

2.
The interactions in vitro between [3H]estradiol and liver proteins from Xenopus laevis have been examined to determine if the binding reaction meets criteria of steroid-receptors which may function in the induction of vitellogenesis. Estrogenic hormones associated with proteins in serum and liver cytosol from Xenopus laevis. However, the interactions between soluble liver proteins and estrogens apparently do not result from serum contamination of liver as specific binding was distinguishable by ligand affinity and by differential mobility on polyacrylamide gels. Steroid ligands bound by liver proteins during incubation in vitro were examined by solubility and by thin-layer chromatography. Only a small percentage (13%) of the bound radioactive ligand was recovered as the original tritium-labeled steroid, 17β-estradiol. The major ligand was recovered as a water-soluble metabolite of estradiol which was identified tentatively as an estradiol-glucoside. To investigate whether the protein-bound estradiol metabolite(s) merely masks a small amount of authentic estradiol-receptor complexes or if the metabolite could be an intermediate in estrogen function, isolated liver nuclei were incubated with liver cytosol containing 3H-labeled steroid-protein complexes or with serum protein-bound [3H]estradiol. Nuclei preferentially accumulated 3H-labelea steroids from liver cytosol protein-steroid complexes relative to [3H]estradiol from serum proteins. However, analysis of the steroids recovered in the nuclei after incubation with liver cytosol revealed that both 17β-[3H]estradiol and the 3H-labeled water-soluble metabolite were retained in vitro by nuclei.  相似文献   

3.
Bovine serum albumin immobilized on agarose has been tested in competitive binding studies as a means of measuring the binding of cortisol, tryptophan, fatty acids, and bilirubin to a number of albumins and albumin fragments. Chemical coupling of albumin to agarose does not appear to alter the primary binding sites for most ligands and the degree of ligand binding by immobilized albumin is comparable to that by soluble albumin. Evaluation of ligand binding by a protein based on its competition with immobilized protein is suggested as a convenient procedure particularly well suited to proteins and ligands whose size precludes investigation by dialysis or whose instability demands a rapid procedure.  相似文献   

4.
Circular dichroism methods were used to study the structure of rat ligandin and the binding of organic anions to the protein. Ligandin has a highly ordered secondary structure with about 40%alpha helix, 15% beta structure, and 45% random coil. Bilirubin binding occurred primarily at a single high affinity site on the protein. The binding constant for bilirubin (5 X 10-7 Mminus 1) was the highest among the ligands studied. The bilirubin-ligandin complex exhibited a well-defined circular dichroic spectrum with two major overlapping ellipticity bands of opposite sign in the bilirubin absorption region. This spectrum was virtually a mirror image of that of human or rat serum albumin-bilirubin complexes. Studies on the direct transfer of bilirubin from ligandin to rat serum albumin showed that sasociation constants of bilirubin-ligandin complexes were approximately tenfold less than those of the bilirubin-albumin system. Ligandin exhibited a broad specificity with respect to the typeof ligand bond. A series of organic anions inclucing dyes used clinically for liver function tests, fatty acids, hormones, heme derivatives, bile acids, and other ligands that were considered likely to interact with ligandin, were examined. Most induced ellipticity changes consistent with competitive displacement of bilirubin from ligandin and relative affinities of these compounds for ligandin were determined based on their effectiveness in desplacing the bilirubin. Some substances such as glutathione, conjugated sulfobromophthaleins and lithocholic acid bound to ligandin but induced anomalous spectral shifts, when added to ligandin-bilirubin complexes. Other compounds, including some that act as substrates for the glutathione transferase activity exhibited by ligandin, revealed no apparent competitive effects with respect to the bilitubin binding site.  相似文献   

5.
BACKGROUND: Flow cytometric microsphere-based binding assays can be used to measure molecular interactions with high sensitivity. We have used multiplexed microsphere technology to explore the effect that binding site density has on the apparent affinity of a soluble interaction partner. METHODS: The interaction of a nuclear receptor, peroxisome proliferator-activated receptor gamma ligand binding domain (PPARgamma LBD), with a synthetic peptide derived from a nuclear receptor coactivator protein, PPARgamma coactivator-1 alpha (PGC-1alpha), is the interacting system being studied. The density of this peptide coupled to fluorescently unique microsphere populations is varied by co-incubating the biotinylated peptide and avidin-coated microsphere populations with increasing the amounts of free D-biotin. The discrete-density peptide-coupled microsphere populations are combined to conduct a multiplexed binding experiment with Alexa 532-labeled PPARgamma LBD, in the absence or presence of a small molecule ligand. RESULTS: As the immobilized binding site density of PGC-1alpha peptide on fluorescent microspheres is increased the measured apparent affinity for PPARgamma LBD is increased. CONCLUSIONS: The density of binding sites immobilized to a surface has a pronounced effect on the apparent affinity for soluble binding partners. By controlling and varying the binding site density it is possible to increase the sensitivity of an interaction assay. In multiplexed assay formats it should be possible to normalize intrinsically unequal binding interactions by individually optimizing the binding site density of the immobilized interaction partner. However, to quantitatively measure intrinsic affinities of molecular interactions, low binding site densities are required and multivalent reagents must be avoided.  相似文献   

6.
1. The interaction of the haem-binding region of apomyoglobin with different ligands was examined by ultrafiltration, equilibrium dialysis and spectrophotometry, to study unspecific features of protein-ligand interactions such as they occur in, for example, serum albumin binding. 2. Apomyoglobin, in contrast with metmyoglobin, binds at pH 7, with a high affinity, one molecule of Bromophenol Blue, bilirubin and protoporphyrin IX, two molecules of n-dodecanoate and n-decyl sulphate and four molecules of n-dodecyl sulphate and n-tetradecyl sulphate. 3. The number of high-affinity sites and/or association constants for the alkyl sulphates are enhanced by an increase of hydrocarbon length, indicating hydrophobic interactions with the protein. 4. Measurements of the temperature-dependence of the association constants of the high-affinity sites imply that the binding processes are largely entropy-driven. 5. Binding studies in the presence of two ligands show that bilirubin plus Bromophenol Blue and dodecanoate plus Bromophenol Blue can be simultaneously bound by apomyoglobin, but with decreased affinities. By contrast, the apomyoglobin-protoporphyrin IX complex does not react with Bromophenol Blue. 6. Optical-rotatory-dispersion measurements show that the laevorotation of apomyoglobin is increased towards that of metmyglobin in the presence of haemin and protoporphyrin IX. Small changes in the optical-rotatory-dispersion spectrum of apomyoglobin are observed in the presence of the other ligands. 7. It is concluded that the binding sites on apomyoglobin probably do not pre-exist but appear to be moulded from predominantly non-polar amino acid residues by reaction with hydrophobic ligands. 8. Comparison with data in the literature indicates that apomyoglobin on a weight basis has a larger hydrophobic area avaialble for binding of ligands than has human serum albumin. On the other hand, the association constants of serum for the ligands used in this study are generally somewhat larger than those of apomyoglobin.  相似文献   

7.
The interaction of Cibacron Blue F3G A-Sepharose 4B with several serum albumins was studied. Although all albumins used were fond to bind to this adsorbent, human serum albumin was bound to a far greater extent than were the others. From the results of competition experiments and n.m.r. studies of Cibacron Blue and/or bilirubin binding to human serum albumin it is proposed that the mechanism of the interaction between human serum albumin and cibacron Blue is consistent wit Cibacron Blue binding to bilirubin-binding sites. In contrast with these findings with human serum albumin, there is little or no interaction of Cibacron Blue and the bilirubin-binding sites of albumins from rabbit, horse, bovine or sheep sera, although some interaction occurs between Cibacron Blue and the fatty acid-binding sites of these proteins. Structural analogues of Cibacron Blue have been used to investigate the binding of albumins to these ligands.  相似文献   

8.
Despite the broad biological importance of G protein-coupled receptors (GPCRs), ligand recognition by GPCRs remains poorly understood. To explore the roles of GPCR extracellular elements in ligand binding and to provide a tractable system for structural analyses of GPCR/ligand interactions, we have developed a soluble protein that mimics ligand recognition by a GPCR. This receptor analog, dubbed CROSS5, consists of the N-terminal and third extracellular loop regions of CC chemokine receptor 3 (CCR3) displayed on the surface of a small soluble protein, the B1 domain of Streptococcal protein G. CROSS5 binds to the CCR3 ligand eotaxin with a dissociation equilibrium constant of 2.9 +/- 0.8 microM and competes with CCR3 for eotaxin binding. Control proteins indicate that juxtaposition of both CCR3 elements is required for optimal binding to eotaxin. Moreover, the affinities of CROSS5 for a series of eotaxin mutants are highly correlated with the apparent affinities of CCR3 for the same mutants, demonstrating that CROSS5 uses many of the same interactions as does the native receptor. The strategy used to develop CROSS5 could be applied to many other GPCRs, with a variety of potential applications.  相似文献   

9.
Hepatic biotransformation of bilirubin to the hydrophilic species bilirubin mono- (BMG) and diglucuronide (BDG) by microsomal bilirubin UDP-glucuronosyl-transferase (GT) is a prerequisite for its physiologic excretion into bile. The reaction mechanism of bilirubin-GT and the access of bilirubin and BMG (the intermediate substrate) to the active site of bilirubin-GT are undefined. Highly purified [14C]bilirubin and [3H] BMG were coincubated with rat liver microsomes, and the initial rates of radiolabeled bilirubin glucuronide synthesis were measured. Although these substrates differ markedly in their hydrophilicity, no significant differences were observed in [14C]- and [3H]BDG rates of formation from equimolar [14C]bilirubin and [3H] BMG, in the absence or presence of soluble binding proteins (albumin and hepatic cytosol). In further kinetic studies, [14C]bilirubin and [3H]BMG exhibited mutually competitive inhibition of [3H]- and [14C]BDG synthesis, respectively, and [3H]BMG also inhibited [14C]BMG formation. Finally, unlabeled BMG and BDG inhibited the glucuronidation of [14C]bilirubin, with all three pigments yielding virtual Michaelis-Menten dissociation constants in the 10-20 microM range. These findings indicate that: 1) bilirubin-GT follows Michaelis-Menten kinetics for both bilirubin and BMG glucuronidation over the range of substrate concentrations employed; 2) the findings are consistent with a single active site for the enzymatic synthesis of both BMG and BDG; 3) bilirubin, BMG, and BDG bind competitively to this active site with comparable affinities; and 4) access of both bilirubin and BMG substrates to the enzymatic active site is reduced by soluble binding proteins.  相似文献   

10.
Membranes from rat liver were analysed under reducing conditions. The components of the soluble membranes responsible for the binding of acetylated low density lipoprotein (acetyl-LDL) and maleylated bovine serum albumin (Mal-BSA) were chromatographed on a polyethyleneimine-cellulose column and subsequently separated by gel electrophoresis. For both ligands a major binding protein (Mr = 35,000) was revealed by ligand blotting. A minor protein (Mr greater than 67,000) exhibited little binding. The Scatchard plot of the 131I-Mal-BSA binding data of the 35 kDa protein was linear, with a Kd of 17.3 nM. High concentrations of acetyl-LDL competed for half of the 131I-Mal-BSA binding. Excessive Mal-BSA competed for all the visible acetyl-LDL binding. The findings indicate the existence, in the reduced hepatic membrane, of a 35 kDa protein that has two binding sites for 131I-Mal-BSA and one binding site for acetyl-LDL.  相似文献   

11.
The association of membrane-bounded cell organelles to microtubules is crucial for determination of their shape, intracellular localization and translocation. We have shown previously the high affinity binding of peroxisomes to microtubules which appears to be of static nature as in vivo studies indicate that only a few peroxisomes move along the microtubular tracks. In order to characterize the interactions of peroxisomes with microtubules, we have developed a semiquantitative in vitro binding assay, which is based on the association of highly purified rat liver peroxisomes to microtubules coated onto microtiterplates. The binding was visualized by differential interference contrast and immunofluorescence using a confocal laser scanning microscope. The binding was concentration dependent and saturable, being affected by time, temperature, and pH. Addition of ATP or the motor proteins kinesin and dynein increased the binding capacity, while ATP-depletion or microtubule associated proteins (MAPs) decreased it. KCl treatment of peroxisomes reduced the binding, which was restored by dialyzed KCl-stripping eluate as well as by rat liver cytosol. The reconstituting effect of cytosol was abolished by its pretreatment with proteases or N-ethylmaleimide. Moreover, the treatment of peroxisomes with proteases or N-ethylmaleimide reduced their binding, which was not reversed by cytosol. These results suggest the involvement of a peroxisomal membrane protein and cytosolic factor(s) in the binding of peroxisomes to microtubules. This notion is supported by the observation that distinct subfractions of dialyzed KCl-stripping eluate obtained by gel chromatography augmented the binding. Those subfractions, as well as purified peroxisome fractions, exhibited strong immunoreactivity with an antibody to cytoplasmic linker protein (CLIP)-115, revealing a 70-kDa polypeptide. Moreover, immunodepletion of KCl-stripping eluate and its subfractions with an antibody to the conserved microtubule binding domain of CLIPs, abolished their promoting effect on the binding, thus suggesting the involvement of a CLIP-related protein in the binding of peroxisomes to microtubules.  相似文献   

12.
The binding of ethanol to rat liver mitochondria is shown to be saturable at physiologically relevant ethanol concentrations. This effect is reversible and is not observed in extracted mitochondrial phospholipids. Brief exposure of the mitochondria to heat abolishes saturable ethanol binding. Previously, saturable ethanol binding was reported in rat liver microsomes. Taken together, the studies indicate that saturable ethanol binding motifs may be widespread in cellular membranes. The possibility is raised that incomplete expression of the hydrophobic effect in membrane assembly results in the expression of amphipathic packing defects which display an affinity for and a sensitivity to ethanol. The presence of saturable binding modalities is reconciled with the long-standing consensus on the biodistribution of ethanol - that ethanol's interactions with tissue are negligible - on the grounds that the affinities of ethanol and of water for membranes are similar; consequently, free ethanol concentrations are insensitive to the presence of tissue despite significant ethanol binding. A fraction of the binding sites possess submillimolar affinities for ethanol consistent with published functional studies, both in vitro and in vivo, that reported submillimolar efficacies for ethanol.  相似文献   

13.
A protein of S20,W 1.6S and mol.wt. 14000, which binds covalently a metabolite of the aminoazodye carcinogen NN-dimethyl-4-amino-3'-methylazobenzene, was isolated from rat liver cytosol from both carcinogen-treated and normal rats. The protein binds non-covalently palmitoyl-CoA, fatty acids, bilirubin, sex steroids and their sulphates, bile acids and salts, bromosulphophthalein, diethylstilboestrol and 20-methylcholanthrene with a wide range of affinities. The protein is isolated as three components with isoelectric points of 5.0, 5.9 and 7.6 by a method involving isoelectric focusing. All three components have closely similar amino acid analyses, tryptic-peptide 'maps' and u.v. spectra. Each single component redistributes into all three on further electrophoresis. However, the three forms differ in their binding characteristics, the form of pI 7.6 having much the highest affinity for compounds bound non-covalently. The protein was identified immunologically in rat liver, small intestine, adipose tissue, skeletal muscle, myocardium and testis. The protein was compared with other hepatic binding-protein preparations of similar molecular weight.  相似文献   

14.
The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-[3H]piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. In contrast, the major differences between the kinetic binding parameters of agonists and antagonists to the low affinity agonist binding sites are in the association rate constants, which were 2-5 orders of magnitude lower for agonists. This demonstrates that there are basic differences in the interactions of agonists with the low and high affinity sites. Our findings also suggest that isomerization of the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.  相似文献   

15.
Stereoselectivity of the binding sites for the specific kappa-opioid agonist [3H]U-69593, a benzeneacetamido based ligand was investigated in membrane suspension prepared from frog and rat brain, as well as guinea pig cerebellum, using the pure chiral forms of different unlabelled opiates. The ligand binding sites showed stereospecificity with at least three orders of magnitude differences in the affinities (measured as Ki values) of the opioid stereoisomer pairs both in rat and guinea pig membrane fractions. However, in frog brain membranes there was no substantial difference in potencies of the (-) and (+) isomers competing for the [3H]U-69593 binding sites. Another type of the kappa-site preferring opioid ligand, [3H]ethylketocyclazocine, a benzomorphan derivative was able to discriminate between (-) and (+) forms of the same compounds even in frog brain membrane preparation. Our data concerning binding profile of [3H]U-69593 in frog brain membranes are consistent with the observation that kappa opioid binding sites in frog (Rana esculenta) brain differ from those kappa-sites found in mammalian brains.  相似文献   

16.
By fractionation of rat liver cytosol with 70% saturation ammonium sulphate, a soluble fraction showing high affinity for oleic acid was obtained. The binding of oleic acid to this fraction was inhibited by flavaspidic acid. The molecular weight of the main protein present in this fraction was 12 000 as determined by SDS-poly-acrylamide-gel electrophoresis. This soluble fraction stimulated the transfer of oleic acid from microsomes to phosphatidylcholine liposomes as demonstrated by a transfer assay in vitro. The behaviour of this fraction is similar to that described for fatty-acid binding protein.  相似文献   

17.
The kinetics of the photochemical changes of bilirubin were studied at a constant concentration of bilirubin bound either to the first class or to the second class of binding sites of the human serum albumin molecule. The more the bilirubin binds to the first class of binding sites in the human serum albumin molecule, the more readily geometric photoequilibrium to give (ZE)-bilirubin takes place. The more the bilirubin binds to the second class of binding sites or allosterically transformed binding sites induced by added SDS, the more readily structural photoisomerization, i.e. the formation of (EZ)-cyclobilirubin, takes place. When the serum bilirubin concentration is at low, safe, values bilirubin binds exclusively to the first class of binding sites and serves as an antioxidant [Onishi, Yamakawa & Ogawa (1971) Perinatology 1, 373-379]; at these concentrations human serum albumin protects bilirubin from irreversible photodegradation by only allowing readily reversible geometric photoisomerization. As the serum bilirubin concentration increases to high, and potentially dangerous, values, bilirubin binds to the second class of binding sites, and under these conditions human serum albumin seems to promote the photocyclization of bilirubin. During irradiation human serum albumin seems to act by retaining low, useful, concentrations of bilirubin while facilitating irreversible photoisomerization of excess bilirubin.  相似文献   

18.
To clarify the mechanism of inhibition of (Na+ + K+)-ATPase by cardiac glycosides, we tried to see if ouabain binding alters the properties of the binding sites for Na+, K+, and ATP. Ouabain was bound in the presence of either Na+ + MgATP or MgPi. Ligand-induced changes in the rate of release of ouabain from the two resulting complexes were used as signals to determine the affinities, the numbers, and the interactions of the ligand binding sites. Because the two complexes showed differences in the properties of their ligand binding sites, and since neither complex could be converted to the other, it is concluded that either the enzyme has two dissimilar but mutually exclusive ouabain sites or that it can be frozen in two distinct conformations by ouabain. The following ligand sites were identified on the two complexes: 1) two coexisting ATP sites (K0.5 values, 0.1 and 2 mM) representing altered states of the catalytic and the regulatory sites of the native enzyme; 2) mutually exclusive Na+ and K+ sites whose affinities (K0.5 values, 1.3 mM Na+ and 0.1 mM K+) suggested their identities with the high affinity uptake sites of the native enzyme; and 3) coexisting low affinity Na+ and K+ sites (K0.5 values, 0.2-0.6 M) representing either the discharge sites, or the regulatory sites, or the access channels of the native enzyme. The data suggest that the inability of the ouabain-complexed enzyme to participate in the normal reaction cycle is not because of its lack of ligand binding sites but most likely due to ouabain-induced disruptions of interprotomer site-site interactions.  相似文献   

19.
Radioligand binding studies with [3H]vasopressin (AVP) were used to determine the affinities of AVP receptor agonists and antagonists for mouse liver and kidney plasma membrane preparations. Both membrane preparations exhibited one class of high-affinity binding site. AVP ligand binding inhibition studies confirmed that mouse liver binding sites belong to the V1A subtype while kidney binding sites belong to the V2 receptor subtype. The affinity of each ligand for mouse V1A receptors was very similar to that for rat V1A receptors, showing differences in Ki values of less than 3-fold. In contrast, several peptide (d(CH2)5Tyr(Me)AVP) and nonpeptide (OPC-21268 and SR 49059) ligands had different affinities for mouse and rat kidney V2 receptors, with differences in Ki values ranging from 14- to 17-fold. These results indicate that mouse and rat kidney V2 receptors show significant pharmacologic differences.  相似文献   

20.
Direct photoaffinity labeling of leukotriene binding sites   总被引:1,自引:0,他引:1  
Due to their conjugated double bonds the leukotrienes themselves are photolabile compounds and may therefore be used directly for photoaffinity labeling of leukotriene binding sites. Cryofixation eliminates unspecific labeling taking place in solution by photoisomers and photodegradation products of leukotrienes. After fixation of receptor ligand interactions by shock-freezing of the samples, irradiation-induced highly reactive excited states and/or intermediates can form covalent bonds with the respective binding site in the frozen state. After cryofixation of a solution of albumin incubated with [3H8]leukotriene E4, irradiation at 300 nm resulted in time-dependent incorporation of radioactivity into the protein. Photoaffinity labeling of rat as well as of human blood serum with [3H8]leukotriene E4 after cryofixation revealed that only one polypeptide with an Mr of 67,000 was labeled. This polypeptide was identified as albumin. Photoaffinity labeling of rat liver membrane subfractions enriched with sinusoidal membranes resulted in the labeling of a polypeptide with an apparent Mr of 48,000, whereas no polypeptide was predominantly labeled in the subfraction enriched with canalicular membranes. Photoaffinity labeling of isolated hepatocytes disclosed different leukotriene E4 binding polypeptides. In the particulate fraction of hepatocytes a polypeptide with an apparent Mr of 48,000 was labeled predominantly, whereas in the soluble fraction several polypeptides were labeled to a similar extent. One of these, with an apparent Mr of 25,000, was identified as subunit 1 of glutathione transferases by immunoprecipitation. The method of direct photoaffinity labeling in the frozen state after cryofixation using leukotrienes as photoactivatable compounds, as exemplified by leukotriene E4, may be most useful for the identification and characterization of various leukotriene binding sites, including receptors, leukotriene-metabolizing enzymes, and transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号