首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene regulation by microRNAs   总被引:13,自引:0,他引:13  
  相似文献   

2.
Control of protein synthesis and mRNA degradation by microRNAs   总被引:6,自引:0,他引:6  
  相似文献   

3.
The Ago2 component of the RNA-induced silencing complex (RISC) is an endonuclease that cleaves mRNAs that base pair with high complementarity to RISC-bound microRNAs. Many examples of such direct cleavage have been identified in plants, but not in vertebrates, despite the conservation of catalytic capacity in vertebrate Ago2. We performed parallel analysis of RNA ends (PAREs), a deep sequencing approach that identifies 5'-phosphorylated, polyadenylated RNAs, to detect potential microRNA-directed mRNA cleavages in mouse embryo and adult tissues. We found that numerous mRNAs are potentially targeted for cleavage by endogenous microRNAs, but at very low levels relative to the mRNA abundance, apart from miR-151-5p-guided cleavage of the N4BP1 mRNA. We also find numerous examples of non-miRNA-directed cleavage, including cleavage of a group of mRNAs within a CA-repeat consensus sequence. The PARE analysis also identified many examples of adenylated small non-coding RNAs, including microRNAs, tRNA processing intermediates and various other small RNAs, consistent with adenylation being part of a widespread proof-reading and/or degradation pathway for small RNAs.  相似文献   

4.
The precise establishment of gene expression patterns is a crucial step in development. Formation of a sharp boundary between high and low spatial expression domains requires a genetic mechanism that exhibits sensitivity, yet is robust to fluctuations, a demand that may not be easily achieved by morphogens alone. Recently, it has been demonstrated that small RNAs (and, in particular, microRNAs) play many roles in embryonic development. Whereas some RNAs are essential for embryogenesis, others are limited to fine-tuning a predetermined gene expression pattern. Here, we explore the possibility that small RNAs participate in sharpening a gene expression profile that was crudely established by a morphogen. To this end, we study a model in which small RNAs interact with a target gene and diffusively move from cell to cell. Though diffusion generally smoothens spatial expression patterns, we find that intercellular mobility of small RNAs is actually critical in sharpening the interface between target expression domains in a robust manner. This sharpening occurs as small RNAs diffuse into regions of low mRNA expression and eliminate target molecules therein, but cannot affect regions of high mRNA levels. We discuss the applicability of our results, as examples, to the case of leaf polarity establishment in maize and Hox patterning in the early Drosophila embryo. Our findings point out the functional significance of some mechanistic properties, such as mobility of small RNAs and the irreversibility of their interactions. These properties are yet to be established directly for most classes of small RNAs. An indirect yet simple experimental test of the proposed mechanism is suggested in some detail.  相似文献   

5.
Small RNAs loaded into Argonaute proteins direct silencing of complementary target mRNAs. It has been proposed that multiple, imperfectly complementary small interfering RNAs or microRNAs, when bound to the 3' untranslated region of a target mRNA, function cooperatively to silence target expression. We report that, in cultured human HeLa cells and mouse embryonic fibroblasts, Argonaute1 (Ago1), Ago3, and Ago4 act cooperatively to silence both perfectly and partially complementary target RNAs bearing multiple small RNA-binding sites. Our data suggest that for Ago1, Ago3, and Ago4, multiple, adjacent small RNA-binding sites facilitate cooperative interactions that stabilize Argonaute binding. In contrast, small RNAs bound to Ago2 and pairing perfectly to an mRNA target act independently to silence expression. Noncooperative silencing by Ago2 does not require the endoribonuclease activity of the protein: A mutant Ago2 that cannot cleave its mRNA target also silences noncooperatively. We propose that Ago2 binds its targets by a mechanism fundamentally distinct from that used by the three other mammalian Argonaute proteins.  相似文献   

6.
MiRNA:一种新的基因表达调节子   总被引:6,自引:1,他引:5  
李成梅  郑继刚  杜桂森 《遗传》2004,26(1):133-136
在动植物基因组中广泛存在一类非编码蛋白的RNA基因,产生长度大约为21~24个核苷酸的RNA,它们被命名为microRNA(miRNA)。 这是一类具有调节其他基因表达活性的小RNA。在生物的发育过程中发挥着重要作用。本文对这种基因表达调节途径的发现、机制功能及研究方法和现状作简要概述。 Abstract:Plant and animal genomes contain an abundance of small genes that produce RNAs of about 22 nucleotides in length, which was dubbed as microRNAs.These newly found endogenous RNAs may participate in a wide range of genetic regulatory pathways and play an important role in the development.This paper is focused on the finding of the microRNAs,its mechanism and function,as well as the methods of research.  相似文献   

7.
Post-transcriptional gene silencing by siRNAs and miRNAs   总被引:23,自引:0,他引:23  
Recent years have seen a rapid increase in our understanding of how double-stranded RNA (dsRNA) and 21- to 25-nucleotide small RNAs, microRNAs (miRNAs) and small interfering RNAs (siRNAs), control gene expression in eukaryotes. This RNA-mediated regulation generally results in sequence-specific inhibition of gene expression; this can occur at levels as different as chromatin modification and silencing, translational repression and mRNA degradation. Many details of the biogenesis and function of miRNAs and siRNAs, and of the effector complexes with which they associate have been elucidated. The first structural information on protein components of the RNA interference (RNAi) and miRNA machineries is emerging, and provides some insight into the mechanism of RNA-silencing reactions.  相似文献   

8.
符梅  徐克惠  许文明 《遗传》2016,38(7):612-622
Dicer是微小非编码RNA生成的关键内切酶,介导微小RNA(micro RNA,miRNA)和小干扰RNA(small interfering RNA,siRNA)的产生,通过RNA干扰(RNA interference,RNAi)途径实现转录或转录后水平基因调控,在调节细胞增殖、分化、凋亡等方面起重要作用。近年来Dicer基因在生殖领域的研究越来越受关注,最近的研究表明Dicer与男性生精细胞发育、精子形成及成熟、精子活力和形态生成、卵泡发育、排卵及黄体形成、性激素合成、输卵管功能、子宫内膜容受性等方面都有密切关系。繁衍后代需要精子和卵子的共同参与,Dicer可能通过影响精子和卵子的数量或者质量进而导致胚胎发育异常,因此理解Dicer在雄性与雌性生殖的重要调节作用对于理解生殖调节异常相关的疾病如无精子症、复发性流产等的发病机制具有重要的作用。本文对Dicer在雄性生殖道与雌性生殖中的关键作用进行了综述,旨在进一步从分子层面深入理解Dicer与生殖相关疾病的关系。  相似文献   

9.
10.
The gene organization of small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) varies within and among different organisms. This diversity is reflected in the maturation pathways of these small noncoding RNAs (ncRNAs). The presence of noncoding RNAs in introns has implications for the biogenesis of both mature small RNAs and host mRNA. The balance of the interactions between the processing or ribonucleoprotein assembly of intronic noncoding RNAs and the splicing process can regulate the levels of ncRNA and host mRNA. The processing of snoRNAs - both intronic and non-intronic - is well characterised in yeast, plants and animals and provides a basis for examining how intronic plant miRNAs are processed.  相似文献   

11.
12.
13.
Dicer proteins are ribonuclease III enzymes that process double stranded RNA precursors into small RNAs categorized as small interfering RNAs (siRNAs) or microRNAs (miRNAs), which suppress gene expression through the RNA silencing mechanism. We have isolated a dicer-like gene (dcl-1) of Mucor circinelloides, the first gene of this family to be identified in zygomycetes. The dcl-1 mRNA occurred in multiple forms, including the truncated molecules that result from premature polyadenylation. Null dcl-1 mutants were not impaired as regards transgene-induced gene silencing, since they exhibited the same silencing frequency as the wild-type strain and accumulated the two size classes of siRNA associated with RNA silencing in M. circinelloides. However, dcl-1 mutants showed a reduced growth rate and a hyphal growth alteration, which suggests that the dcl-1 gene has some role in the control of endogenous functions.  相似文献   

14.

Background  

MicroRNAs are non-coding small RNAs of ~22 nucleotides that regulate the gene expression by base-paring with target mRNAs, leading to mRNA cleavage or translational repression. It is currently estimated that microRNAs account for ~ 1% of predicted genes in higher eukaryotic genomes and that up to 30% of genes might be regulated by microRNAs. However, only very few microRNAs have been functionally characterized and the general functions of microRNAs are not globally studied.  相似文献   

15.
Identification of piRNAs in the central nervous system   总被引:1,自引:0,他引:1  
Piwi-interacting RNAs (piRNAs) are small noncoding RNAs generated by a conserved pathway. Their most widely studied function involves restricting transposable elements, particularly in the germline, where piRNAs are highly abundant. Increasingly, another set of piRNAs derived from intergenic regions appears to have a role in the regulation of mRNA from early embryos and gonads. We report a more widespread expression of a limited set of piRNAs and particularly focus on their expression in the hippocampus. Deep sequencing of extracted RNA from the mouse hippocampus revealed a set of small RNAs in the size range of piRNAs. These were confirmed by their presence in the piRNA database as well as coimmunoprecipitation with MIWI. Their expression was validated by Northern blot and in situ hybridization in cultured hippocampal neurons, where signal from one piRNA extended to the dendritic compartment. Antisense suppression of this piRNA suggested a role in spine morphogenesis. Possible targets include genes, which control spine shape by a distinctive mechanism in comparison to microRNAs.  相似文献   

16.
17.
Chen Z  Zhang J  Kong J  Li S  Fu Y  Li S  Zhang H  Li Y  Zhu Y 《Genetica》2006,128(1-3):21-31
Small non-coding RNAs play important roles in regulating cell functions by controlling mRNA turnover and translational repression in eukaryotic cells. Here we isolated 162 endogenous small RNA molecules from Oryza sativa, which ranged from 16 to 35 nt in length. Further analysis indicated that they represented a diversity of small RNA molecules, including 17 microRNAs (miRNAs), 30 tiny non-coding RNAs (tncRNAs) and 20 repeat-associated small interfering RNAs (rasiRNAs). Among 17 miRNAs, 13 were novel miRNA candidates and their potential targets were important regulatory genes in the rice genome. We also found that a cluster of small RNAs, including many rasiRNAs, matched to a nuclear DNA fragment that evolutionarily derived from chloroplast. These results demonstrate clearly the existence of distinct types of small RNAs in rice and further suggest that small RNAs may control gene regulation through diverse mechanisms.  相似文献   

18.
Moso bamboo (Phyllostachy heterocycla cv. pubescens L.) is an economically important fast-growing tree. In order to gain better understanding of gene expression regulation in this important species we used next generation sequencing to profile small RNAs in leaf and roots of young seedlings. Since standard kits to produce cDNA of small RNAs are biased for certain small RNAs, we used High Definition adapters that reduce ligation bias. We identified and experimentally validated five new microRNAs and a few other small non-coding RNAs that were not microRNAs. The biological implication of microRNA expression levels and targets of microRNAs are discussed.  相似文献   

19.
20.
Sorting of Drosophila small silencing RNAs   总被引:3,自引:0,他引:3  
Tomari Y  Du T  Zamore PD 《Cell》2007,130(2):299-308
In Drosophila, small interfering RNAs (siRNAs), which direct RNA interference through the Argonaute protein Ago2, are produced by a biogenesis pathway distinct from microRNAs (miRNAs), which regulate endogenous mRNA expression as guides for Ago1. Here, we report that siRNAs and miRNAs are sorted into Ago1 and Ago2 by pathways independent from the processes that produce these two classes of small RNAs. Such small-RNA sorting reflects the structure of the double-stranded assembly intermediates--the miRNA/miRNA( *) and siRNA duplexes--from which Argonaute proteins are loaded. We find that the Dcr-2/R2D2 heterodimer acts as a gatekeeper for the assembly of Ago2 complexes, promoting the incorporation of siRNAs and disfavoring miRNAs as loading substrates for Drosophila Ago2. A separate mechanism acts in parallel to favor miRNA/miRNA( *) duplexes and exclude siRNAs from assembly into Ago1 complexes. Thus, in flies small-RNA duplexes are actively sorted into Argonaute-containing complexes according to their intrinsic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号