首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
The fragments of DNA attached to protein skeleton of interphase nuclei or metaphase chromosomes were obtained. Both the method involving restriction endonuclease treatment/1,2/and a novel procedure based on mild staphylococcal nuclease digestion were used. In the latter case, DNA fragments remaining bound to nuclei or chromosomes are not enriched in satellite but only in abundant middle repetitive DNA. The shorter the fragments of attached DNA, the higher the content of middle repetitive DNA in the fraction. It has a slightly higher density in a CsCl gradient comparing to the main DNA. The yield of attached DNA, its distribution in a CsCl density gradient, and its renaturation properties are essentially the same for interphase and metaphase chromosomes. The average size of DNA loops was found to be equal to approximately 60 kb for both metaphase chromosomes and interphase nuclei. The conclusion has been drawn that the bulk of attachment sites of DNP fibrils to axial chromosomal structures remains unchanged during the cell cycle.  相似文献   

3.
T L Chen  L Manuelidis 《Genomics》1989,4(3):430-433
In a human neuroblastoma line, minute chromosomes were separable from the bulk of interphase nuclear DNA by contour-clamped homogeneous electric field (CHEF) gel electrophoresis. The minute chromosomes showed a homogeneous size of approximately 3 Mbp and contained amplified N-myc genes. Fractionation was accomplished without prior strand-cleaving treatment of the DNA, indicating that at least a portion of the minute chromosomes exist as free entities in the interphase nuclei. Human alphoid satellite DNA sequences were also detected in the 3-Mbp band. It is possible that alphoid sequences are contained in the constricted central region that joins these double minutes.  相似文献   

4.
The stability of chromosomes carrying amplified CAD (carbamyl phosphate synthetase-aspartate transcarbamylase-dihydroorotase) or DHFR (dihydrofolate reductase) genes was studied in V79 Chinese hamster cell derivatives resistant to PALA (N-phosphonacetyl-L-aspartate) and MTX (methotrexate), respectively. Cells were maintained in the presence of the selective drugs during the study. In both metaphase chromosomes and interphase nuclei, amplified regions were localized by in situ hybridization. In MTX-resistant cells, the amplification-bearing chromosome moved sluggishly at anaphase and gave rise to bud-shaped formations in interphase nuclei. It is suggested that these buds could eventually separate as micronuclei. In both MTX- and PALA-resistant cells, amplified DNA was observed in micronuclei in interphase and in displaced chromosomes in metaphase. Finally, amplification-bearing dicentric chromosomes were found in both drug-resistant cell lines. Cumulatively, these observations indicate that the presence of the amplified region in a chromosome renders it unstable: chromosomes bearing an amplified region tended to be excluded from cells, and rearrangements were more frequent than in normal chromosomes.  相似文献   

5.
Interphase membrane-depleted nuclei and metaphase chromosomes were prepared in parallel with a nonionic detergent lysis procedure at low ionic strength. By flow microfluorometry we showed for the first time that cell lysates contain all stages of the cell cycle in the same proportions as the starting cell population. Morphologically intact membrane-depleted nuclei and metaphase chromosomes were isolated as non-aggregated structures on sucrose gradients. When analysed in the electron microscope, membrane-depleted nuclei that had been treated with 2M NaCl appeared as residual structures containing the pore complex-lamina layer attached to a halo of DNA filaments. In contrast, no distinct high salt-resistant structure was found with metaphase chromosomes. They formed a highly fragile network which disintegrated easily into small complexes connected with DNA filaments. High salt-resistant DNA-protein complexes were purified by Metrizamide density gradient centrifugation. The main difference in the protein composition of interphase and metaphase residual complexes was the presence in interphase of a protein triplet in the 60–75 kilodalton molecular weight range and its absence in metaphase. This protein triplet most likely corresponds to the lamins A, B, and C of the nuclear lamina. The combined results suggest that the main difference in the structural organization of interphase nuclei and metaphase chromosomes is the presence or absence of the pore complex-lamina layer.  相似文献   

6.
7.
Fundamental differences were previously discovered in the ADP-ribosylation of proteins from metaphase chromosomes and interphase nuclei of HeLa cells. The number of modified nonhistone species was found to be dramatically reduced for metaphase chromosomes. An investigation has therefore been made of factors which could influence, and therefore be responsible for, this change in ADP-ribosylation during the cell cycle. Modified proteins were detected by autoradiography of sodium dodecyl sulfate-polyacrylamide gels containing mitotic and interphase samples from permeabilized cells that had been incubated with [32P]NAD. Whole cells showed a difference between interphase and metaphase similar to that for isolated nuclei and chromosomes. Chromosome expansion, disruption of chromosomes or nuclei, DNA nicking, and cellular growth activity significantly changed the incorporation of 32P label. Inhibitors of protein, RNA, and DNA synthesis did not, however, greatly affect ADP-ribosylation. The pattern of labeled species was not altered by the presence of nonradioactive NAD, though the extent of labeling declined. The results were not artifactually due to the procedure used to arrest cells in mitosis. Similar results were found with Novikoff rat hepatoma cells, demonstrating that the difference between metaphase and interphase is not confined to HeLa cells.  相似文献   

8.
The state of the chromosomes in the interphase nucleus   总被引:8,自引:2,他引:6  
In the living interphase nucleus no chromosomal structures are visible. Yet in the injured cell and after treatment with most histological fixatives chromatin structures become apparent. Under certain conditions this appearance of structure in the living interphase nucleus is reversible. We have found that this change in the interphase nucleus is the result of a change in the state of the chromosomes. In the living nucleus the chromosomes are in a greatly extended state, filling the entire nucleus. Upon injury the chromosomes condense and therefore become visible. At the same time the nuclear volume decreases. This behavior of the chromosomes is connected with their content of desoxyribonucleic acid (DNA). This view is based on the following observations: (a) Distribution of DNA in the Nucleus.-(1) The living interphase nucleus of uninjured cells absorbs diffusely at 2537 A. No chromosomal structures are visible in ultraviolet photographs unless they are also distinct in ordinary light. If the chromosomes are made to condense they become visible and the absorption at 2537 A is now localized in these structures. (2) After fixation with formalin and osmic acid interphase nuclei stain diffusely with Feulgen. These fixatives preserve the extended state of the chromosomes. (3) If nuclei are teased out in non-electrolytes (sucrose, glycerin) the chromosomes are extended. Such nuclei stain homogeneously with methyl green. On adding salts the chromosomes condense and the methyl green is now restricted to the visible structures. (b) Extension and Condensation of Isolated Chromosomes.-When chromosomes isolated from interphase nuclei of calf thymus are suspended in sucrose, their volume is four to five times larger than in saline, but they retain their characteristic shapes. Chromosomes from which DNA and histone have been removed do not show this reversible extension and condensation, neither do lampbrush chromosomes of frog oocytes which contain very little DNA. During mitosis a partial condensation of the DNA occurs in prophase, so that the mitotic chromosomes now occupy a much smaller volume of the nucleus. At telophase the chromosomes swell again to fill the entire nucleus.  相似文献   

9.
Scaffold attachment of DNA loops in metaphase chromosomes   总被引:19,自引:0,他引:19  
We have examined the higher-order loop organization of DNA in interphase nuclei and metaphase chromosomes from Drosophila Kc cells, and we detect no changes in the distribution of scaffold-attached regions (SARs) between these two phases of the cell cycle. The SARs, previously defined from experiments with interphase nuclei, not only are bound to the metaphase scaffold when endogenous DNA is probed but also rebind specifically to metaphase scaffolds when added exogenously as cloned, end-labeled fragments. Since metaphase scaffolds have a simpler protein pattern than interphase nuclear scaffolds, and both have a similar binding capacity, it appears that the population of proteins required for the specific scaffold-DNA interaction is limited to those found in metaphase scaffolds. Surprisingly, metaphase scaffolds isolated from Drosophila Kc cells contain both the lamin protein and a pore-complex protein, glycoprotein (gp) 188. To study whether lamin contributes to the SAR-scaffold interaction, we have carried out comparative binding studies with scaffolds from HeLa metaphase chromosomes, which are free of lamina, and from HeLa interphase nuclei. All Drosophila SAR fragments tested bind with excellent specificity to HeLa interphase scaffolds, whereas a subset of them bind to HeLa metaphase scaffolds. The maintenance of the scaffold-DNA interaction in metaphase indicates that lamin proteins are not involved in the attachment site for at least a subset of Drosophila SARs. This evolutionary and cell-cycle conservation of scaffold binding sites is consistent with a fundamental role for these fragments in the organization of the genome into looped domains.  相似文献   

10.
Summary Conventional and molecular cytogenetic analyses of three murine cancer cell lines that had been induced in male athymic mice by the injection of three different human prostate cancer cell lines revealed selective amplification of the Y chromosome. In particular, analysis of metaphase and interphase nuclei by fluorescence in situ hybridization (FISH) with the mouse Y chromosome-specific DNA painting probe revealed the presence of various numbers of Y chromosomes, ranging from one to eight, with a large majority of nuclei showing two copies (46.5–60.1%). In Interphase nuclei, the Y chromosomes showed distinct morphology, allowing identification irrespective of whether the preparations were treated for 15 min or for 5 h with Colcemid, a chemical known to cause chromosome condensation. However, FISH performed on human lymphocyte cultures with chromosome-specific DNA painting probes other than the Y chromosome did not reveal condensed chromosome morphology in interphase nuclei even after 12 h of Colcemid treatment. Our FISH results indicate that (1) the Y chromosome is selectively amplified in all three cell lines; (2) the mouse Y chromosome number is comparable in both interphase and metaphase cells; (3) the Y chromosome number varies between one and eight, with a large majority of cells showing two or three copies in most interphase nuclei; (4) the condensation of the Y chromosome is not affected by the duration of Colcemid treatment but by its inherent DNA constitution; and (5) the number of copies of the Y chromosome is increased and retained not only in human prostate tumor cell lines but also in murine tumors induced by these prostate tumor cell lines.  相似文献   

11.
Summary A non-radioactive in situ hybridization technique is described which allows the simultaneous detection of different DNA sequences. To demonstrate the feasibility of the proccdure, metaphases and interphase nuclei of a human-mouse somatic cell hybrid were simultaneously hybridized with mercurated total human DNA and a biotinylated mouse satellite DNA probe. After the hybridization, the probes were detected immunocytochemically using two different and independent affinity systems. By this approach we visualized the two DNA target sequences in metaphase chromosomes and in interphase nuclei with FITC and TRITC fluorescence, or blue (alkaline phosphatase) and brown (peroxidase) precipitated enzyme products. This method not only allows detection of intact chromosomes but also the visualization of rearrangements between parts of human and mouse chromosomes. Furthermore, the technique demonstrates the high topological resolution of nonradioactive in situ hybridizations.This investigation was supported in part by FUNGO, Foundation of Medical Scientific Research in The Netherlands (grant nr 13-54-21)  相似文献   

12.
The chromatin in interphase nuclei is much less condensed than are metaphase chromosomes, making the resolving power of fluorescence in situ hybridization (FISH) two orders of magnitude higher in interphase nuclei than on metaphase chromosomes. In mammalian species it has been demonstrated that within a certain range the interphase distance between two FISH sites can be used to estimate the linear DNA distance between the two probes. The intephase mapping strategy has never been applied in plant species, mainly because of the low sensitivity of the FISH technique on plant chromosomes. Using a CCD (charge-coupled device) camera system, we demonstrate that DNA probes in the 4 to 8 kb range can be detected on both metaphase and interphase chromosomes in maize. DNA probes pA1-Lc and pSh2.5·SstISalI, which contain the maize locia1 andsh2, respectively, and are separated by 140 kb, completely overlapped on metaphase chromosomes. However, when the two probes were mapped in interphase nuclei, the FISH signals were well separated from each other in 86% of the FISH sites analyzed. The average interphase distance between the two probes was 0.50 µm. This result suggests that the resolving power of interphase FISH mapping in plant species can be as little as 100 kb. We also mapped the interphase locations of another pair of probes, ksu3/4 and ksu16, which span theRp1 complex controlling rust resistance of maize. Probes ksu3/4 and ksu16 were mapped genetically approximately 4 cM apart and their FISH signals were also overlapped on metaphase chromosomes. These two probes were separated by an average of 2.32 µm in interphase nuclei. The possibility of estimating the linear DNA distance between ksu3/4 and ksu16 is discussed.  相似文献   

13.
A degenerate alpha satellite DNA probe specific for a repeated sequence on human chromosomes 13 and 21 was synthesized using the polymerase chain reaction (PCR). Fluorescence in situ hybridization (FISH) with this probe to normal metaphase spreads revealed strong probe binding to the centromeric regions of human chromosomes 13 and 21 with negligible cross-hybridization with other chromosomes. FISH to normal interphase cell nuclei showed four distinct domains of probe binding. However, hybridization with probe to interphase and metaphase preparations from one apparently normal human male resulted in only three major binding domains. Metaphase chromosome analysis revealed a centromeric deletion on one chromosome 21 that caused greatly reduced probe binding. The result suggest caution in the interpretation of interphase ploidy studies performed with chromosome-specific alphoid DNA probes.  相似文献   

14.
Two recombinant DNA clones that are localized to single human chromosomes were isolated from a human repetitive DNA library. Clone pHuR 98, a variant satellite 3 sequence, specifically hybridizes to chromosome position 9qh. Clone pHuR 195, a variant satellite 2 sequence, specifically hybridizes to chromosome position 16qh. These locations were determined by fluorescent in situ hybridization to metaphase chromosomes, and confirmed by DNA hybridizations to human chromosomes sorted by flow cytometry. Pulsed field gel electrophoresis analysis indicated that both sequences exist in the genome as large DNA blocks. In situ hybridization to intact interphase nuclei showed a well-defined, localized organization for both DNA sequences. The ability to tag specific human autosomal chromosomes, both at metaphase and in interphase nuclei, allows novel molecular cytogenetic analyses in numerous basic research and clinical studies.  相似文献   

15.
This report describes the localization of specific nucleic acid sequences in interphase nuclei and metaphase chromosomes by a new hybridocytochemical method based on the use of mercurated nucleic acid probes. After the hybridization a sulfhydryl-hapten compound is reacted with the hybrids formed. A number of such ligands were synthesized and tested. A fluorescyl ligand could be used for the direct visualization of highly repetitive sequences. For indirect immunocytochemical visualization trinitrophenyl ligands were found to be more sensitive than biotinyl analogues. These ligands were applied for the detection of target sequences in metaphase chromosomes and interphase nuclei of somatic cell hybrids, human lymphoid cell lines and blood cell cultures. The sequences were in the range of high to low copy numbers. The lower limit of sensitivity is indicated by the visualization of two human unique DNA fragments (40 and 15.6 kb) in human metaphases. The method is rapid, gives consistent results and can be used for both RNA and DNA probes. Other potentials of the new principle are discussed.  相似文献   

16.
Heat denaturation of DNA in situ, in unbroken cells, was studied in relation to the cell cycle. DNA in metaphase cells denatured at lower temperatures (8 degrees-10 degrees C lower) than DNA in interphase cells. Among interphase cells, small differences between G1, S, and G2 cells were observed at temperatures above 90 degrees C. The difference between metaphase and interphase cells increased after short pretreatment with formaldehyde, decreased when cells were heated in the presence of 1 mM MgCl2, and was abolished by cell pretreatment with 0.5 N HCl. The results suggest that acid-soluble constituents of chromatin confer local stability to DNA and that the degree of stabilization is lower in metaphase chromosomes than in interphase nuclei. These in situ results remain in contrast to the published data showing no difference in DNA denaturation in chromatin isolated from interphase and metaphase cells. It is likely that factors exist which influence the stability of DNA in situ are associated with the super-structural organization of chromatin in intact nuclei and which are lost during chromatin isolation and solubilization. Since DNA denaturation is assayed after cell cooling, there is also a possibility that the extent of denatured DNA may be influenced by some factors that control strand separation and DNA reassociation. The different stainability of interphase vs. metaphase cells, based on the difference in stability of DNA, offers a method for determining mitotic indices by flow cytofluorometry, and a possible new parameter for sorting cells in metaphase.  相似文献   

17.
Individual interphase chromosome domains revealed by in situ hybridization   总被引:15,自引:0,他引:15  
Summary The position and arrangement of individual chromosomes in interphase nuclei were examined in mouse-human cell hybrids by in situ hybridization of biotinylated human DNA probes. Intense and even labeling of human chromosomes with little background was observed when polyethylene glycol and Tween-20 were included in hybridization solutions. Human interphase chromosomes were separated from each other in the nucleus, and were confined to well localized domains. Hybrid cells with a single human chromosome showed a reproducible position of this chromosome in the nucleus. Some chromosomes appeared to have a characteristic folding pattern in interphase. Optical section as well as electron microscopy of labeled regions revealed the presence of 0.2 m wide fibers in each interphase domain, as well as adjacent, locally extended 500 nm fibers. Such fibers are consistent with previously proposed structural models of interphase chromosomes.  相似文献   

18.
We have studied the morphology of nuclei in Drosophila embryos during the syncytial blastoderm stages. Nuclei in living embryos were viewed with differential interference-contrast optics; in addition, both isolated nuclei and fixed preparations of whole embryos were examined after staining with a DNA-specific fluorescent dye. We find that: (a) The nuclear volumes increase dramatically during interphase and then decrease during prophase of each nuclear cycle, with the magnitude of the nuclear volume increase being greatest for those cycles with the shortest interphase. (b) Oxygen deprivation of embryos produces a rapid developmental arrest that is reversible upon reaeration. During this arrest, interphase chromosomes condense against the nuclear envelope and the nuclear volumes increase dramatically. In these nuclei, individual chromosomes are clearly visible, and each condensed chromosome can be seen to adhere along its entire length to the inner surface of the swollen nuclear envelope, leaving the lumen of the nucleus devoid of DNA. (c) In each interphase nucleus the chromosomes are oriented in the "telophase configuration," with all centromeres and all telomeres at opposite poles of the nucleus; all nuclei at the embryo periphery (with the exception of the pole cell nuclei) are oriented with their centromeric poles pointing to the embryo exterior.  相似文献   

19.
AN ANALYSIS OF HETEROCHROMATIN IN MAIZE ROOT TIPS   总被引:2,自引:1,他引:1       下载免费PDF全文
The B chromosomes of maize are condensed in appearance during interphase and are relatively inert genetically; therefore they fulfill the definition of heterochromatin. This heterochromatin was studied in root meristem cells by radioautography following administration of tritiated thymidine and cytidine, and was found to behave in a characteristic way, i.e. it showed asynchronous DNA synthesis and very low, if any, RNA synthesis. A cytochemical comparison of normal maize nuclei with nuclei from isogenic maize stock containing approximately 15–20 B-chromosomes in addition to the normal complement has revealed the following: (a) the DNA and histone contents are greater in nuclei with B chromosomes; (b) the proportion of DNA to histone is identical with that of nuclei containing only normal chromosomes; (c) the amount of nonhistone protein in proportion to DNA in interphase is less in nuclei with B chromosomes than in normal nuclei. In condensed B chromosomes the ratio of nonhistone protein to DNA is similar to that in other condensed chromatin, such as metaphase chromosomes and degenerating nuclei. The B chromosomes appear to have no effect on nucleolar RNA and protein. Replication of B chromosomes is precisely controlled and is comparable to that of the ordinary chromosomes not only in synthesis for mitosis but also in formation of polyploid nuclei of root cap and protoxylem cells.  相似文献   

20.
Chromatin distribution was visualized in living cells with the selective DNA fluorochrome Hoechst 33342. This dye was shown to be non-toxic on the rat kangaroo PTO cell line by measuring the labelled cell growth rate. The aim of this work was firstly to visualize chromatin distribution without fixation or dehydration and secondly to demonstrate that quantitative determination of DNA content was possible under these non-toxic labelling conditions. During interphase, condensed, decondensed and thin network chromatin configurations were visualized. In nucleolar regions the fluorochrome revealed well-defined chromocentres. During mitosis, fluorescent chromosome banding was observed in vital conditions and chromocentres on fixed chromosomes. Chromatin segregation was visualized after micronucleation, which induced chromosomal set distribution in individual micronuclei. By this means, we demonstrated that the chromocentres observed in interphase nuclei were part of nuclear organizer region (NOR)-bearing chromosomes. This vital staining of chromatin was shown to be compatible with the quantitative determination of DNA content, both in living PTO cells and in isolated nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号