首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Parameters of ATP uptake by fully functional Saccharomyces cerevisiae mitochondria, including kinetic constants, binding constants and sensitivity to atractylate, closely resemble those of mammalian mitochondria. Scatchard plots of atractylate-sensitive adenine nucleotide binding indicate two distinct sites of high affinity (binding constant, K(D)'=1mum), and low affinity (binding constant, K(D)'=20mum) in the ratio 1:3. Uptake has high Arrhenius activation energies (+35 and +57kJ/mol), above and below a transition temperature of 11 degrees C. Atractylate-insensitive ATP uptake is apparently not saturable and has a low Arrhenius activation energy (6kJ/mol), suggesting a non-specific binding process. 2. Kinetic and binding constants for ATP uptake are not significantly changed in catabolite-repressed or anaerobic mitochondrial structures. 3. Inhibition of the mitochondrial protein-synthesizing system by growth of cells in the presence of erythromycin, or loss of mitochondrial DNA by mutation profoundly alters the adenine nucleotide transporter. ATP uptake becomes completely insensitive to atractylate, and the high-affinity binding site is lost. However, the adenine nucleotide transporter does not appear to be totally eliminated, as a moderate amount of saturable low-affinity ATP binding remains. 4. It is concluded that products of the mitochondrial protein-synthesizing system, probably coded by mitochondrial DNA, are required for the normal function of the adenine nucleotide transporter.  相似文献   

2.
Net adenine nucleotide transport into and out of the mitochondrial matrix via the ATP-Mg/Pi carrier is activated by micromolar calcium concentrations in rat liver mitochondria. The purpose of this study was to induce net adenine nucleotide transport by varying the substrate supply and/or extramitochondrial ATP consumption in order to evaluate the effect of the mitochondrial adenine nucleotide pool size on intramitochondrial adenine nucleotide patterns under phosphorylating conditions. Above 12 nmol/mg protein, intramitochondrial ATP/ADP increased with an increase in the mitochondrial adenine nucleotide pool. The relationship between the rate of respiration and the mitochondrial ADP concentration did not depend on the mitochondrial adenine nucleotide pool size up to 9 nmol ADP/mg mitochondrial protein. The results are compatible with the notion that net uptake of adenine nucleotides at low energy states supports intramitochondrial ATP consuming processes and energized mitochondria may lose adenine nucleotides. The decrease of the mitochondrial adenine nucleotide content below 9 nmol/mg protein inhibits oxidative phosphorylation. In particular, this could be the case within the postischemic phase which is characterized by low cytosolic adenine nucleotide concentrations and energized mitochondria.  相似文献   

3.
Intracellular Na+ is approximately two times higher in diabetic cardiomyocytes than in control. We hypothesized that the increase in Na+i activates the mitochondrial membrane Na+/Ca2+ exchanger, which leads to loss of intramitochondrial Ca2+, with a subsequent alteration (generally depression) in bioenergetic function. To further evaluate this hypothesis, mitochondria were isolated from hearts of control and streptozotocin-induced (4 weeks) diabetic rats. Respiratory function and ATP synthesis were studied using routine polarography and 31P-NMR methods, respectively. While addition of Na+ (1-10 mM) decreased State 3 respiration and rate of oxidative phosphorylation in both diabetic and control mitochondria, the decreases were significantly greater for diabetic than for control. The Na+ effect was reversed by providing different levels of extramitochondrial Ca2+ (larger Ca2+ levels were needed to reverse the Na+ depressant effect in diabetes mellitus than in control) and by inhibiting the Na+/Ca2+ exchanger function with diltiazem (a specific blocker of Na+/Ca2+ exchange that prevents Ca2+ from leaving the mitochondrial matrix). On the other hand, the Na+ depressant effect was enhanced by Ruthenium Red (RR, a blocker of mitochondrial Ca2+ uptake, which decreases intramitochondrial Ca2+). The RR effect on Na+ depression of mitochondrial bioenergetic function was larger in diabetic than control. These findings suggest that intramitochondrial Ca2+ levels could be lower in diabetic than control and that the Na+ depressant effect has some relation to lowered intramitochondrial Ca2+. Conjoint experiments with 31P-NMR in isolated superfused mitochondria embedded in agarose beads showed that Na+ (3-30 mM) led to significantly decreased ATP levels in diabetic rats, but produced smaller changes in control. These data support our hypothesis that in diabetic cardiomyocytes, increased Na+ leads to abnormalities of oxidative processes and subsequent decrease in ATP levels, and that these changes are related to Na+ induced depletion of intramitochondrial Ca2+.  相似文献   

4.
The effect of acute respiratory hypoxia in rats on mitochondrial respiration, adenine nucleotides and some amino acids of the heart was studied. The decrease in the total (ATP + ADP + AMP) and exchangeable (ATP + ADP) adenine nucleotide pool of the mitochondria was accompanied by a pronounced loss of state 3 respiration with glutamate plus malate and a slight decrease with succinate plus rothenone. The uncoupled respiration of mitochondria with glutamate and malate was decreased in the same degree as in the absence of 2,4-dinitrophenol. State 4 respiration with substrates of both types was unaffected by hypoxia. These data point to a hypoxia-induced impairment of complex I of the respiratory chain. The decrease of tissue and mitochondrial glutamate was accompanied by the elevation of alanine content in the heart and an increase in intramitochondrial aspartate. The ADP-stimulated respiration of mitochondria was correlated with mitochondrial glutamate and ATP as well as with exchangeable adenine nucleotide pools during hypoxia. The experimental results suggest that mitochondrial dysfunction induced by hypoxia may also be attributed to the low level of mitochondrial glutamate.  相似文献   

5.
The exchange of intramitochondrial ATP (ATP(in)) for extramitochondrial ATP (ATP(out)) was measured by using 31P NMR spectroscopy over a range of temperatures in isolated rat liver mitochondria oxidizing glutamate and succinate in the presence of external ATP but no added ADP (state 4). The rate of this exchange is more than an order of magnitude faster than rates reported previously that were determined by using isotopic techniques in the presence of oligomycin, the potent ATPase inhibitor. Differences are ascribed in part to the low levels of matrix ATP present in oligomycin-treated mitochondria. The addition of oligomycin to mitochondrial suspensions decreases intramitochondrial ATP levels from 17 +/- 3 (SEM) nmol/mg of protein in state 4 to 1.51 +/- 0.1 nmol/mg of protein in the presence of inhibitor at 8 degrees C. Simultaneously, transporter flux falls from 960 +/- 55 nmol/min.mg to undetectable levels (less than 300 nmol/min.mg). Although transport rates are much faster when measured by saturation-transfer than by conventional isotopic methods, the enthalpy values obtained by determining the effect of temperature on flux are very similar to those reported in the past that were determined by using isotopic techniques. Intramitochondrial ATP content regulates the rate of the ATP(in)/ATP(out) exchange. At 18 degrees C, the concentration of internal ATP that produces half-maximal transport rate is 6.6 +/- 0.12 nmol/mg of mitochondrial protein. The relationship between substrate concentration and flux is sigmoidal and is 90% saturated at 11.3 +/- 0.18 nmol/mg of mitochondrial protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Octanoate applied to rat liver mitochondria respiring with glutamate plus malate or succinate (plus rotenone) under resting-state (State 4) conditions stimulates oxygen uptake and decreases the membrane potential, both effects being sensitive to oligomycin but not to carboxyatractyloside. Octanoate also decreases the rate of pyruvate carboxylation under the same conditions, this effect being correlated with the decrease of intramitochondrial content of ATP and increase of AMP. The decrease of pyruvate carboxylation and the change of mitochondrial adenine nucleotides are both reversed by 2-oxoglutarate. Fatty acids of shorter chain length have similar effects, though at higher concentrations. Addition of octanoate in the presence of fluoride (inhibitor of pyrophosphatase) produces intramitochondrial accumulation of pyrophosphate, even under conditions when oxidation of octanoate is prevented by rotenone. In isolated hepatocytes incubated with lactate plus pyruvate, octanoate also increases oxygen uptake and produces a shift in the profile of adenine nucleotides similar to that observed in isolated mitochondria. It decreases the ‘efficiency’ of gluconeogenesis, as expressed by the ratio between an increase of glucose production and an increase of oxygen uptake upon addition of gluconeogenic substrates (lactate plus pyruvate), and increases the reduction state of mitochondrial NAD. These effects taken together are not compatible with uncoupling, but point to intramitochondrial hydrolysis of octanoyl-CoA and probably also shorter chain-length acyl-CoAs. This mechanism probably functions as a ‘safety valve’ preventing a drastic decrease of intramitochondrial free CoA under a large supply of medium- and short-chain fatty acids.  相似文献   

7.
Liver mitochondria from octanoate-treated rabbits showed an impaired ability to synthesize citrulline. Two methods were used to evaluate citrulline synthesis in rat liver mitochondria. Under these conditions octanoate inhibited citrulline synthesis by over 50%. When ATP was included in the assay medium the inhibitory effect of octanoate was prevented. In the absence of ATP in the suspending medium, octanoate did not significantly lower total adenine nucleotides in rat liver mitochondria. However, under these conditions octanoate caused a change in the adenine nucleotide profile such that ATP content was decreased and AMP content was increased. When ATP was present in the assay medium, octanoate caused a similar increase in AMP content. However, ATP decreased only slightly. The alterations in mitochondrial adenine nucleotide profile by octanoate and the reversal of the effect by exogenous ATP suggests that octanoate inhibits citrulline synthesis via reduced intramitochondrial ATP levels. The ability of octanoate to lower mitochondrial ATP and elevate mitochondrial AMP may be related to its intramitochondrial activation by the medium chain fatty acid activating enzyme.  相似文献   

8.
Simultaneous inhibition of oxidative phosphorylation by rho- mutation and adenine nucleotide exchange by op1 mutation or bongkrekic acid results in intramitochondrial energy depletion and cessation of growth in yeast. Effect of energy depletion of mitochondria on mitochondrial biogenesis was studied in intact yeast cells. Immunoblot analysis revealed an overall decrease in cellular content of two mitochondrial proteins - ADP/ATP translocase and beta subunit of mitochondrial ATPase - together with their lower ability to reach the proper intramitochondrial compartment. Both effects indicate disturbed biogenesis of energy depleted mitochondria. Quantitative differences in growth abilities and mitochondrial damage observed in two studied systems - op1 rho- double mutants and rho- cells treated with bongkrekic acid - can be explained by different degree of intramitochondrial energy depletion due to leakiness of op1 mutation in op1 rho- cells.  相似文献   

9.
The effect of acute hypoxia on adenine nucleotides, glutamate, aspartate, alanine and respiration of heart mitochondria was studied in rats. The losses of intramitochondrial adenine nucleotides (ATP+ADP+AMP) during hypoxia were related to depression of state 3 respiration supported by glutamate and malate, as well as decrease in uncoupled respiration. Hypoxia had less prominent effect on succinate-dependent state 3 respiration. Non-phosphorylating (state 4) respiratory rates and ADP/O ratios were slightly affected by oxygen deprivation. Glutamate fall in tissue and mitochondria of hypoxic hearts was concomitant with significant increase in tissue alanine and mitochondrial aspartate. The losses of intramitochondrial ATP and respiratory activity with NAD-dependent substrates during hypoxia were related to a decrease in mitochondrial glutamate. The results suggest that hypoxia-induced impairment of complex I of respiratory chain and a loss of glutamate from the matrix may limit energy-producing capacity of heart mitochondria.  相似文献   

10.
Mitochondrial respiration was studied as a function of the total adenine nucleotide content of rat liver mitochondria. The adenine nucleotide content was varied by treating isolated mitochondria with pyrophosphate or by incubating pyrophosphate-treated mitochondria with ATP. Mitochondria with at least 4 nmol adenine nucleotides/mg protein maintained at least 80% of the State 3 activity of control mitochondria, which had approximately 10 nmol/mg protein. However, State 3 decreased rapidly once the adenine nucleotide content fell below 4 nmol/mg protein. Between 2 and 4 nmol adenine nucleotides/mg, State 3 was not limited by the maximal capacity of electron flow as measured by the uncoupled respiration. However, at very low adenine nucleotide levels (<2 nmol/mg), the uncoupled rates of respiration were markedly depressed. State 4 was not affected by changes in the mitochondrial adenine nucleotide content. Adenine translocase activity varied in almost direct correlation with changes in the adenine nucleotide content. Therefore, adenine translocase activity was more sensitive than State 3 to changes in total adenine nucleotides over the range of 4 to 10 nmol/mg protein. The results suggest that (i) State 3 is dependent on the level of intramitochondrial adenine nucleotides, particularly in the range below 4 nmol/mg protein, (ii) adenine translocase activity is not rate-limiting for oxidative phosphorylation in mitochondria with the normal complement of adenine nucleotides, however, at low adenine nucleotide levels, depressed State 3 rates may be explained in part by the low rate of ADP translocation, and (iii) a mechanism of net ATP uptake exists in mitochondria with low internal adenine nucleotides.  相似文献   

11.
1. In a 100 mM-KCl medium (pH 6.8) containing ATP, triethyltin (1 muM) causes a decrease in the uptake of pyruvate, malate, citrate or beta-hydroxybutyrate by rat liver mitochondria, but no decrease is observed in a 100 mM-KNO3 medium. This response is not modified by the presence of rotenone in the incubation medium. 2. In the KCl medium at least 1 muM-triethyltin is required to cause maximum inhibition of pyruvate uptake. 3. Trimethyltin, tributyltin and the trialkyl-lead analogues at 1 muM, to varying degrees, also cause a decrease in pyruvate uptake by mitochondria only in the KCl medium. 4. Triethyltin stimulates resting respiration of mitochondria with all the substrates tested in the KCl medium but not in the KNO3 medium, yet this stimulation of O2 uptake occurs under conditions when substrate uptake is decreased. 5. In contrast, both O2 uptake during state 3 respiration and ATP synthesis when linked to the oxidation of pyruvate, malate or citrate are strongly inhibited by 1 muM-triethyltin in a KCl medium, but O2 uptake and ATP synthesis during the oxidation of beta-hydroxybutyrate are only slightly affected. In a KNO3 medium O2 uptake and ATP synthesis linked to the oxidation of all substrates are only slightly affected. 6. The relevance of the decrease in substrate uptake by mitochondria caused by triethyltin in a KCl medium to the greater sensitivity of various mitochondrial functions observed in vitro is discussed. It is concluded that decrease of matrix substrate content is probably not the major cause of the greater sensitivity of oxidative phosphorylation to triethyltin in a KCl medium observed previously.  相似文献   

12.
1. A binding site (site 1) is present in mitochondria with affinity for trimethyltin and triethyltin adequate for a site to which they could be attached when the processes of energy conservation are inhibited. 2. The quantitative relationships between the binding of trimethyltin and triethyltin to site 1 and their effects on various mitochondrial functions have been examined. 3. ATP synthesis linked to the oxidation of pyruvate, succinate and intramitochondrial substrate, ATP synthesis and oxygen uptake (succinate or pyruvate as substrate) stimulated by uncoupling agents are all inhibited by trimethyltin and triethyltin; when inhibition is less than 50% the ratio (percentage inhibition)/(percentage of binding site 1 complexed) is approx. 10:1. 4. ATP synthesis linked to the oxidation of reduced cytochrome c (ascorbate+NNN'N'-tetramethyl-p-phenylenediamine), ATP hydrolysis and oxygen uptake in the presence of low concentrations of trimethyltin and triethyltin approach zero activity as the proportion of binding site 1 complexed approaches 100%. 5. Possible interpretations of these findings are discussed with reference to published arrangements for coupling of electron transport to ATP synthesis and also to our present knowledge of the chemical and biological specificity of trialkyltin compounds.  相似文献   

13.
The effects of ADP, carboxyatractyloside (CAT) and the local anaesthetic nupercaine on the energy-dependent Ca2+ uptake by rat liver mitochondria oxidizing succinate in the presence of oligomycin were compared, using incubation media of 320 mosM and 120 mosM tonicities. In hypotonic media the mitochondrial Ca2+ capacity was increased by 50%, and the mitochondria were more stable to the damaging effects of Ca + Pi. In the presence of ADP the Ca2+ capacities of mitochondria increased both in normotonic and hypotonic media; however, the absolute amounts of calcium consumed were levelled off. CAT abolished the effect of ADP on the mitochondrial Ca2+ uptake and equalized the Ca2+ capacities of rat liver mitochondria in the both media. The local anaesthetic nupercaine also increased the Ca2+ capacity of mitochondria. The effects of nupercaine and ADP were additive. CAT abolished the effect of ADP but not that of nupercaine. Measurements of the intramitochondrial contents of adenine nucleotides showed that in 120 mosM media there was a significant increase in the intramitochondrial content of ATP and the total pool of adenine nucleotides. It was concluded that in hypotonic media the mitochondrial adenine nucleotide carrier exists predominantly in the m-conformation thus facilitating the energization of mitochondria.  相似文献   

14.
The respiration of rat liver mitochondria was stimulated by three different ways of energy drain: (a) partial uncoupling (equivalent to direct collapse of the proton-motive force), (b) intramitochondrial utilization of ATP for citrulline synthesis, and (c) extramitochondrial utilization of ATP for glucose phosphorylation. At identical rates of respiration, the intramitochondrial ATP: ADP ratios were the same in all three systems. Furthermore, the proton-motive force was the same in partially uncoupled mitochondria and in the presence of hexokinase plus glucose up to a respiration rate amounting to about 60% of that of the fully active state. However, external ATP: ADP ratios were considerably different in various systems at comparable rates of oxygen uptake, being the lowest under conditions when ATP was being utilized externally. On this basis, it is concluded that the respiratory rate is controlled directly by the proton-motive force and the mitochondrial ATP-synthesizing system operates under near-equilibrium conditions with respect to the membrane energy state parameters. However, a disequilibrium exists at the step of the transport of ATP from mitochondria to the external (cytoplasmic) compartment.  相似文献   

15.
1. A study is presented of the mitochondrial NADH content during controlled (state 4) and active (state 3) pyruvate oxidation by blowfly flight-muscle mitochondria. The results confirm and extend those of an earlier study (Hansford, 1972), which indicated an increased reduction in state 3. Nicotinamide nucleotide is normally highly oxidized during state 4; however, there can be substantial reduction in the presence of carnitine or high concentrations of proline, or on lengthy incubation in the presence of either of the systems used to generate intramitochondrial tricarboxylate-cycle intermediate. 2. Omission of phosphate leads to substantial reduction and this can be reversed by adding phosphate or acetate. 3. Estimations of NAD-+ and NADH in fly thoraces show a marked increase in NADH on flight, tending to corroborate the results of mitochondrial experiments and testifying to the importance of dehydrogenase activation in this tissue. 4. Determination of intramitochondrial adenine nucleotides reveals a total of 4-5 nmol/mg of protein, and an ADP content of less than 0.1 nmol/mg during state 4 oxidation of pyruvate and proline. ATP content is found to increase slowly during state 4 and this is attributed to the net phosphorylation of AMP. 5. The uncoupling agent carbonyl cyanide p=trifluoromethoxyphenylhydrazone leads to hydrolysis of some, but not all, of the mitochondrial ATP. Studies of mitochondrial ATPase (adenosine triphosphatase), measured by external pH change, show that it is inactive unless the mitochondria are allowed to respire for several minutes in state 4 in the presence of phosphate before the addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. It is suggested that phosphate uptake is essential for maximal ATPase activity. 6. Studies of the fluorescence of the fluorochrome 8-anilino-1-naphthalensulphonic acid suggest that the energy status of the mitochondrion is high during state 4-pyruvate oxidattion, and decrease slightly in state 3. The implications of these findings are discussed.  相似文献   

16.
The relationship between the respiration rate and the intra- and extramito-chondrial adenine nucleotides was investigated in isolated rat liver mitochondria.

For the determination of adenine nucleotide patterns in both compartments a new procedure was developed, based on the evaluation of these metabolites from incubation of various amounts of mitochondria under identical stationary states of oxidative phosphorylation. These identical states were adjusted by addition of appropriate amounts of hexokinase to a glucose-containing incubation mixture.

Adenine nucleotides were measured in aliquots of the total extract of the incubation mixture without any separation. The concentrations of the adenine nucleotides in both compartments were obtained from a plot of the total concentration of these species versus mitochondrial protein. Disturbances of this method by unspecific efflux of adenine nucleotides could be excluded.

The results obtained for the total adenine nucleotide content (12 nmol · mg−1 protein) and the intramitochondrial [ATP]/[ADP] ratio (about 4 in the resting state) are in good agreement with data obtained by other methods.

Strong evidence is provided for a decrease of the intramitochondrial [ATP]/[ADP] ratio with increasing rate of oxygen consumption. Therefore it is not necessary to assume a microcompartmentation of the intramitochondrial adenine nucleotide pool in respect to the ATPase reaction and the adenine nucleotide translocation.  相似文献   


17.
The adaptation of oxidative energy transformation in mitochondria to the energy demand of cellular metabolism was investigated in experiments with isolated mitochondria and liver cells and by computer simulation in terms of a mathematical model. Separate draining of different energy pools allowed the determination of the relation between these pools and the elucidation of the importance of the connecting enzyme reactions to the regulation of the whole process. The following conclusions can be drawn from the results: 1. The intramitochondrial adenine nucleotide pool exhibits a homogeneous behaviour, and its changes are the signal for ATP synthesis. 2. The proton-motive force which is in near-equilibrium with the intramitochondrial phosphorylation potential is the immediate signal for the respiratory chain. 3. The intramitochondrial phosphorylation potential is transformed into the external one by a flux-dependent non-equilibrium reaction of the translocator. 4. The rate of respiration-linked ATP formation is regulated by more than one reaction step with varying control strength. 5. In both isolated mitochondria and hepatocytes an activation of respiration is provoked by a decrease in the mitochondrial energy state caused by cellular energy utilization.  相似文献   

18.
We report here initial studies on phosphoenolpyruvate metabolism in coupled mitochondria isolated from Jerusalem artichoke tubers. It was found that: (1) phosphoenolpyruvate can be metabolized by Jerusalem artichoke mitochondria by virtue of the presence of the mitochondrial pyruvate kinase, shown both immunologically and functionally, located in the inner mitochondrial compartments and distinct from the cytosolic pyruvate kinase as shown by the different pH and inhibition profiles. (2) Jerusalem artichoke mitochondria can take up externally added phosphoenolpyruvate in a proton compensated manner, in a carrier-mediated process which was investigated by measuring fluorimetrically the oxidation of intramitochondrial pyridine nucleotide which occurs as a result of phosphoenolpyruvate uptake and alternative oxidase activation. (3) The addition of phosphoenolpyruvate causes pyruvate and ATP production, as monitored via HPLC, with their efflux into the extramitochondrial phase investigated fluorimetrically. Such an efflux occurs via the putative phosphoenolpyruvate/pyruvate and phosphoenolpyruvate/ATP antiporters, which differ from each other and from the pyruvate and the adenine nucleotide carriers, in the light of the different sensitivity to non-penetrant compounds. These carriers were shown to regulate the rate of efflux of both pyruvate and ATP. The appearance of citrate and oxaloacetate outside mitochondria was also found as a result of phosphoenolpyruvate addition.  相似文献   

19.
On integrating experimental data published previously, the following picture of the mitochondrial adenine nucleotide (AdN) translocation system is being presented: 1. The AdN translocation system serves not only to transport ATP synthesized within mitochondria into the cytosol but also to transport cytosolic ATP into the mitochondria when oxidative phosphorylation is not functioning. 2. The AdN translocator is coded for by nuclear genes and the mitochondrial protein synthesis is not involved in its formation. 3. The AdN translocation system must be preserved and functioning even in cells which could dispense with oxidative phosphorylation. It assures appropriate concentrations of intramitochondrial ATP. 4. The intramitochondrial ATP is required for normal replication of mitochondrial DNA. Tis supports the view that the mitochondrion is a self-replicating semi-autonomous organelle. 5. The appropriate concentration of ATP must be present in mitochondria to make possible cell growth or multiplication. This points to a direct or indirect role of mitochondria in the control of cell proliferation.  相似文献   

20.
Changes of the extra- and intramitochondrial ATP/ADP ratios as a function of the respiratory state were measured in incubations with rat liver mitochondria. ATPase or creatine/creatine kinase was used to change the extramitochondrial ATP/ADP ratio; the separation of the mitochondrial pellet was performed by a Millipore filtration technique. Under all conditions tested, the intramitochondrial ratio changed in the same direction as the extramitochondrial one, except in the presence of atractylate where this correlation was not observed. Furthermore, it could be shown that the oxygen uptake and pyruvate carboxylase activity correlated with the intramitochondrial ATP/ADP ratio and not with the extramitochondrial one. These results do not support the proposal that the adenine nucleotide translocase is rate limiting for respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号