首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary RFLPs of 36 normal and 41 mutant alleles at the phenylalanine hydroxylase locus were determined in 31 Portuguese kindreds. A total of 14 haplotypes including 10 normal and 7 mutant alleles were observed. Almost 75% of all mutant alleles were confined within only two haplotypes, namely haplotype 9 (17.1%) and haplotype 1 (56.1%). This frequency of mutant haplotype 1 in Portugal is, to our knowledge, the highest for this mutant haplotype in all studies reported to date. Other mutant haplotypes were either rare (haplotype 2, 9.7%) or totally absent (haplotype 3, 0%). Only 24.5% of all mutant alleles were found to consistently carry identified mutations, particularly R261Q (9.8%), R252W (3.3%), R408W (1.6%) and I94 (3.3%). A new mutation, L249F, located in the seventh exon of the gene, accounted for 6.5% of all mutant alleles in our series. Interestingly, this mutant genotype was consistently associated with mutant haplotype 1 (P<0.01), as also observed for the R261Q mutation. It appears, therefore, that mutant haplotype 1 is genotypically heterogeneous in Portugal and that more than two mutations account for its prevalence in this country.  相似文献   

2.
We report the characterization of a mutation in the phenylalanine hydroxylase (PAH) gene associated with partial residual activity of the enzyme. This point mutation (280glu----lys) was found by sequencing a mutant cDNA clone derived from a needle biopsy of the liver in a child with variant form of phenylketonuria. There is a strict concordance between homozygosity for the mutation and this particular phenotype. The (280glu----lys) mutation is linked to an original and rare RFLP haplotype at the PAH locus found in south Europe and North Africa. So far, this genotype-haplotype association is both inclusive and exclusive. Thirty-three PAH-deficient patients were screened for the mutation by using polymerase chain-reaction amplification of their genomic DNA extracted from Guthrie cards. Since a large number of patients can be screened for a particular mutation by using Guthrie cards, the possibility arises of using these samples collected by national newborn screening centers for prospective and retrospective detection of other mutations in the human genome.  相似文献   

3.
Summary Restriction fragment length polymorphism (RFLP) haplotypes at the phenylalanine hydroxylase (PAH) locus have been determined in 60 German families with PAH deficiency. Similar to the Danish population, about 90% of the mutant alleles are confined to four distinct haplotypes. There are however, differences in the frequency distributiion of these haplotypes among the mutant alleles between the two populations. Using an oligonucleotide probe for the splicing mutation associated with mutant haplotype 3 in the Danish population, a tight association between the mutation and the RFLP haplotype has also been observed in Germany. The results provide strong evidence that the splicing mutation occurred on a haplotype 3 chromosome and that the mutant allele has spread into different populations smong Caucasians.  相似文献   

4.
Restriction fragment length polymorphism haplotyping of mutated and normal phenylalanine hydroxylase (PAH) alleles in 49 Dutch phenylketonuria (PKU) families was performed. All mutant PAH chromosomes identified by haplotyping (n = 98) were screened for eight of the most predominant mutations. Compound heterozygosity was proven in 40 kindreds. Homozygosity was found for the IVS12nt1 mutation in 5 families, and for the R158Q and IVS10nt546 mutations in one family each. All patients from these families suffer from severe PKU, providing additional proof that these mutations are deleterious for the PAH gene. Genotypical heterogeneity was evident for mutant haplotype 1 (n = 27) carrying the mutations R261Q (n = 12), E280K (n = 4), P281L (n = 1) and unknown (n = 10), and likewise for mutant haplotype 4 (n = 30) carrying the mutations R158Q (n = 13), Y414C (n = 1) and unknown (n = 16). Mutant haplotype 3 (n = 20), in tight association with mutation IVS12nt1, appeared to be in strong linkage disequilibrium (LDE) with its normal counterpart allele (n = 4). Mutant haplotype 6 (n = 4), in tight association with the IVS10nt546 mutation, showed moderate LDE with its counterpart allele (n = I). The distribution of the mutant PAH haplotypes 1, 3 and 4 among the Dutch PKU population resembles that in other Northern and Western European countries, but it is striking that mutant haplotype 2 and its associated mutation R408W is nearly absent in The Netherlands, in strong contrast to its neighbouring countries.  相似文献   

5.
6.
Recurrent mutation in the human phenylalanine hydroxylase gene.   总被引:4,自引:6,他引:4       下载免费PDF全文
We report the identification of a missense mutation of Glu280 to Lys280 in the phenylalanine hydroxylase (PAH) gene of a phenylketonuria (PKU) patient in Denmark. The mutation is associated with haplotype 1 of the PAH gene in this population. This mutation has previously been found in North Africa, where it is in linkage disequilibrium with haplotype 38. While it is conceivable that this mutation could have been transferred from one haplotype background to another by a double crossover or gene conversion event, the fact that the mutation is exclusively associated with the two different haplotypes in the two distinct populations supports the hypothesis that these two PKU alleles are the result of recurrent mutations in the human PAH gene. Furthermore, since the site of mutation involves a CpG dinucleotide, they may represent hot spots for mutation in the human PAH locus.  相似文献   

7.
Upon amplification in vitro of the 12th exon area of the human phenylalanine hydroxylase gene followed by allele-specific hybridisation of the amplification product with synthetic probes and its sequencing by the Maxam-Gilbert method, a C----T transition causing phenylketonuria has been identified in Latvian patients.  相似文献   

8.
Summary A deletion of a single base in codon 55 (exon 2) of the phenylalanine hydroxylase (PAH) gene has been identified by direct DNA sequencing of 94 phenyl-ketonuria (PKU) chromosomes. This mutation alters the reading frame so that a stop signal (TAA) is generated in codon 60 of the PAH gene. Haplotype analysis revealed that all PKU alleles showing the codon 55 frameshift mutation exhibited haplotype 1. In our panel of DNA probes 13% of all mutant haplotype 1 alleles carry this particular mutation. Patients who were compound heterozygotes for this deletion and R408W in exon 12, or the splice mutation in intron 12, were affected by severe PKU. Thus, the clinical data provide additional evidence that haplotype 1 PKU alleles carry molecular defects which confer a null phenotype. In addition, we were able to show that the newly detected mutation occurs on alleles of different ethnic background.  相似文献   

9.
Because defects in the phenylalanine hydroxylase gene (PAH) cause phenylketonuria (PKU), PAH was studied for normal polymorphisms and linkage disequilibrium soon after the gene was cloned. Studies in the 1980s concentrated on European populations in which PKU was common and showed that haplotype-frequency variation exists between some regions of the world. In European populations, linkage disequilibrium generally was found not to exist between RFLPs at opposite ends of the gene but was found to exist among the RFLPs clustered at each end. We have now undertaken the first global survey of normal variation and disequilibrium across the PAH gene. Four well-mapped single-nucleotide polymorphisms (SNPs) spanning approximately 75 kb, two near each end of the gene, were selected to allow linkage disequilibrium across most of the gene to be examined. These SNPs were studied as PCR-RFLP markers in samples of, on average, 50 individuals for each of 29 populations, including, for the first time, multiple populations from Africa and from the Americas. All four sites are polymorphic in all 29 populations. Although all but 5 of the 16 possible haplotypes reach frequencies >5% somewhere in the world, no haplotype was seen in all populations. Overall linkage disequilibrium is highly significant in all populations, but disequilibrium between the opposite ends is significant only in Native American populations and in one African population. This study demonstrates that the physical extent of linkage disequilibrium can differ substantially among populations from different regions of the world, because of both ancient genetic drift in the ancestor common to a large regional group of modern populations and recent genetic drift affecting individual populations.  相似文献   

10.
11.
Hereditary hemochromatosis is a recessive disease of iron metabolism widely distributed among people of European descent. Most patients have inherited the causative mutation from a single ancestor. In the course of cloning the hemochromatosis gene, genotypes were generated for these samples at 43 microsatellite repeat markers that span the 6.5-Mb hemochromatosis gene region. The data used to reconstruct the ancestral haplotype across the hemochromatosis gene region are presented in this paper. Portions of the ancestral haplotype were present on 85% of patient chromosomes in this sample and ranged in size from approximately 500 kb to greater than 6.5 Mb. Only one marker, D6S2239, was identical by descent on all of the patient chromosomes containing the ancestral mutation. In contrast, only 3 of the 128 control chromosomes, or 2.3%, carried the ancestral mutation and the surrounding ancestral haplotype. To test new methods for gene finding using linkage disequilibrium we analyzed the genotypic data with a multilocus maximum likelihood method (DISMULT) and a single point method (DISLAMB), both written to analyze data generated from multi-allelic markers. The maximum value from DISLAMB analysis occurred at marker D6S2239, which is less than 20 kb from the hemochromatosis gene HFE, consistent with the haplotype analysis. The peak of the multi-point analysis was 700 kb from HFE, possibly due to the nonuniform recombination rates within this large region. The recombination rate appears to be lower than expected centromeric of the HFE gene. Received: 10 June 1997 / Accepted: 4 December 1997  相似文献   

12.
The HindIII RFLP in the human phenylalanine hydroxylase (PAH) gene is caused by the presence of an AT-rich (70%) minisatellite region. This region contains various multiple of 30-bp tandem repeats and is located 3 kb downstream of the final exon of the gene. PCR-mediated amplification of this region from haplotyped PAH chromosomes indicates that the previously reported 4.0-kb HindIII allele contains three of these repeats, while the 4.4-kb HindIII allele contains 12 of these repeats. The 4.2-kb HindIII fragment can contain six, seven, eight, or nine copies of this repeat. These variations permit more detailed analysis of mutant haplotypes 1, 5, 6, and, possibly, others. Kindred analysis in phenylketonuria families demonstrates Mendelian segregation of these VNTR alleles, as well as associations between these alleles and certain PAH mutations. The R261Q mutation, associated with haplotype 1, is associated almost exclusively with an allele containing eight repeats; the R408W mutation, when occurring on a haplotype 1 background, may also be associated with the eight-repeat VNTR allele. Other PAH mutations associated with haplotype 1, R252W and P281L, do not appear to segregate with specific VNTR alleles. The IVS-10 mutation, when associated with haplotype 6, is associated exclusively with an allele containing seven repeats. The combined use of this VNTR system and the existing RFLP haplotype system will increase the performance of prenatal diagnostic tests based on haplotype analysis. In addition, this VNTR may prove useful in studies concerning the origins and distributions of PAH mutations in different human populations.  相似文献   

13.
Summary Haplotypes of the insulin receptor gene were resolved in parents from Scandinavian nuclear families by studying the segregation of seven restriction fragment length polymorphisms (RFLPs). Of 97 unrelated parents, 41 had non-insulin-dependent diabetes mellitus (NIDDM). Considerable linkage disequilibrium in the region of the insulin receptor gene was found. Pairwise non-random associations were found between proximate RFLP sites, indicating the absence of recombinational hot spots between these sites. Thus, association studies between DNA polymorphisms at this locus and disease susceptibility genes could well be feasible in this population. Differences in the distribution of insulin receptor haplotypes were examined between NIDDM patients and healthy subjects. However, the differences observed were not statistically significant.  相似文献   

14.
By direct sequence analysis of 94 mutant phenylalanine hydroxylase alleles using polymerase chain reaction-based techniques, we identified a C to T transition in exon 7 of the human phenylalanine hydroxylase gene that is associated with RFLP haplotypes 1 and 4. A leucine for proline substitution at position 281 can be predicted from the nucleotide sequence of the mutant codon. Expression analysis in cultured mammalian cells after site-directed mutagenesis proved that the base substitution is a disease causing gene lesion. Dot-blot hybridization analysis using allele-specific oligonucleotides revealed that 25% of all mutant haplotype 1 alleles in the German population bear this mutation. In addition, this mutation could be detected on one mutant haplotype 4 allele. The fact that this mutation is associated with only 25% of all mutant haplotype 1 alleles suggests that multiple mutations may be associated with this haplotype. The occurrence of several different mutations would be in agreement with the clinical heterogeneity observed in the group of patients whose PKU alleles belong to haplotype 1.  相似文献   

15.
Phenylalanine hydroxylase was purified from crude extracts of human livers which show enzyme activity by usine two different methods: (a) affinity chromatography and (b) immunoprecipitation with an antiserum against highly purified monkey liver phenylalanine hydroxylase. Purified human liver phenylalanine hydroxylase has an estimated mol. wt. of 275 000, and subunit mol. wts. of approx. 50 000 and 49 000. These two molecular-weight forms are designated H and L subunits. On two-dimensional polyacrylamide gel under dissociating conditions, enzyme purified by the two methods revealed at least six subunit species, which were resolved into two size classes. Two of these species have a molecular weight corresponding to that of the H subunit, whereas the other four have a molecular weight corresponding to that of the L subunit. This evidence indicates that active phenylalanine hydroxylase purified from human liver is composed of a mixture of sununits which are different in charge and size. None of the subunit species could be detected in crude extracts of livers from two patients with classical phenylketonuria by either the affinity or the immunoprecipitation method. However, they were present in liver from a patient with malignant hyperphenylalaninaemia with normal activity of dihydropteridine reductase.  相似文献   

16.
Summary A new mutation (CGA to TGA) in codon 261 of exon 7 of the phenylalanine hydroxylase gene transforms Arg261 to a stop codon in two unrelated patients of German and Turkish origin. The different ethnic backgrounds and the different polymorphic characteristics of the two mutant alleles suggest an independent origin of the mutation. This is the second defect detected in codon 261 of the phenylalanine hydroxylase gene, a codon that thus appears to be a mutation hot spot.  相似文献   

17.
The variation in mutations in exons 3, 6, 7, 11 and 12 of the phenylalanine hydroxylase (PAH) gene was investigated in 59 children with phenylketonuria (PKU) and 100 normal children. Three single nucleotide polymorphisms were detected by sequence analysis. The mutational frequencies of cDNA 696, cDNA 735 and cDNA 1155 in patients were 96.2%, 76.1% and 7.6%, respectively, whereas in healthy children the corresponding frequencies were 97.0%, 77.3% and 8.3%. In addition, 81 mutations accounted for 61.0% of the mutant alleles. R111X, H64 > TfsX9 and S70 del accounted for 5.1%, 0.8% and 0.8% mutation of alleles in exon 3, whereas EX6-96A > G accounted for 10.2% mutation of alleles in exon 6. R243Q had the highest incidence in exon 7 (12.7%), followed by Ivs7 + 2 T > A (5.1%) and T278I (2.5%). G247V, R252Q, L255S, R261Q and E280K accounted for 0.8% while Y356X and V399V accounted for 5.9% and 5.1%, respectively, in exon 11. R413P and A434D accounted for 5.9% and 2.5%, respectively, in exon 12. Seventy-two variant alleles accounted for the 16 mutations observed here. The mutation characteristics and distributions demonstrated that EX6-96A > G and R243Q were the hot regions for mutations in the PAH gene in Shanxi patients with PKU.  相似文献   

18.
Selection at the colony level in social Hymenoptera with colonies containing single, once-mated queens is examined under a simple two-allele model. The condition for balanced polymorphism is X>2V2(V + 1), where V is the fitness of colonies with all workers homozygous and X that of colonies with both heterozygous and homozygous workers, relative to the fitness of colonies with all workers heterozygous. For certain fitness combinations satisfying the above relationship and characterized by values of V and X much lower than one, iteration reveals the development of stable limit cycles of allele frequencies rather than convergence to an equilibrium point. Addition of a third allele, or overlap between generations, eliminates these cycles. Queen-level overdominance is sufficient but not necessary for balanced polymorphism when V < 1, is both sufficient and necessary when V = 1, and is necessary but not sufficient when V > 1. Colony-level selection is a potentially powerful force maintaining genetic variation in populations of social insects, but does not imply correspondence between queen and worker genotype frequencies.  相似文献   

19.
Phenylketonuria (PKU) is an autosomal recessive disease due to deficiency of a hepatic enzyme, phenylalanine hydroxylase (PAH). The absence of PAH activity results in typical PKU while persistence of a residual enzyme activity gives rise to variant forms of the disease. We report here a 3-base pair in-frame deletion of the PAH gene (delta 194) in a mild variant, with markedly reduced affinity of the enzyme for phenylalanine (Km = 160 nM), and we provide functional evidence for responsibility of the deletion in the mutant phenotype. Since the deletion was located in the third exon of the gene, which presents no homology with other hydroxylases, we suggest that exon 3 is involved in the specificity of the enzyme for phenylalanine. Finally, since none of the 98 PKU patients tested were found to carry this particular deletion, our study suggests that this molecular event probably occurred recently on the background of a haplotype 2 gene in Portugal.  相似文献   

20.
Human phenylalanine hydroxylase is a liver-specific enzyme that catalyzes the conversion of phenylalanine to tyrosine. Absence of enzymatic activity results in phenylketonuria, a genetic disorder that causes development of severe mental retardation in untreated children. In this paper we report the cloning and structure of the normal human phenylalanine hydroxylase gene, which was isolated in four overlapping cosmid clones that span more than 125 kilobases (kb) of the genetic locus. The peptide coding region of the gene is about 90 kb in length and contains 13 exons, with intron sizes ranging from 1 to 23 kb. Exons at the 3' half of the gene are compact, whereas those at the 5' half are separated by large introns. The human phenylalanine hydroxylase gene codes for a mature messenger RNA of approximately 2.4 kb, and its noncoding to coding DNA ratio is one of the highest among eukaryotic genes characterized to date. The map positions of nine polymorphic restriction sites identified within the locus were established by restriction enzyme mapping of the cloned gene fragments. Two clusters of polymorphic sites were demonstrated: (1) BglII, PvuII(a), and PvuII(b) at the 5' end of the gene and (2) EcoRI, XmnI, MspI(a), MspI(b), EcoRV, and HindIII at the 3' end. The polymorphic site distribution within this gene is a useful tool for prenatal diagnosis and carrier detection of the genetic disorder, while knowledge of normal gene structure is a prerequisite for future characterization of mutant alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号