首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The veterinary fluoroquinolone enrofloxacin was degraded in vitro by four species of wood-rotting fungi growing on wetted wheat straw containing carbonyl-14C-labeled drug. A maximum 14CO2 production of 17% per week was observed with the brown rot fungus Gloeophyllum striatum, resulting in up to 53% after 8 weeks. However, rates reached at most 0.2 and 0.9% per week, if enrofloxacin was preadsorbed to native or gamma ray-sterilized soil, respectively.  相似文献   

2.
While degrading 2,4-dichlorophenol, two strains of Gloeophyllum striatum, a basidiomycetous fungus causing brown rot decay of wood, simultaneously produced 4-chlorocatechol and 3,5-dichlorocatechol. These metabolites were identified by comparing high-performance liquid chromatography retention times and mass spectral data with those of chemically synthesized standards. Under similar conditions, 3-hydroxyphthalic hydrazide was generated from phthalic hydrazide, a reaction assumed to indicate hydroxyl radical formation. Accordingly, during chemical degradation of 2,4-dichlorophenol by Fenton's reagent, identical metabolites were formed. Both activities, the conversion of 2,4-[U-(14)C]dichlorophenol into (14)CO(2) and the generation of 3-hydroxyphthalic hydrazide, were strongly inhibited by the hydroxyl radical scavenger mannitol and in the absence of iron. These results provide new evidence in favor of a Fenton-type degradation mechanism operative in Gloeophyllum.  相似文献   

3.
Production and Degradation of Oxalic Acid by Brown Rot Fungi   总被引:4,自引:3,他引:1       下载免费PDF全文
Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted 14C-labeled oxalic acid to CO2 during cellulose depolymerization. The other brown rot fungi also oxidized 14C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay. Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize 14C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi.  相似文献   

4.
The roles of lignin peroxidase, manganese peroxidase, and laccase were investigated in the biodegradation of pentachlorophenol (PCP) by several white rot fungi. The disappearance of pentachlorophenol from cultures of wild type strains,P. chrysosporium, Trametes sp. andPleurotus sp., was observed. The activities of manganese peroxidase and laccase were detected inTiametes sp. andPleurotus sp. cultures. However, the activities of ligninolytic enzymes were not detected inP. chrysosporium cultures. Therefore, our results showed that PCP was degraded under ligninolytic as well as nonligninolytic conditions. Indicating that lignin peroxidase, manganese peroxidase, and laccase are not essential in the biodegradation of PCP by white rot fungi.  相似文献   

5.
Demethoxylation reactions in the cultures of the brown-rot fungi Gloeophyllum trabeum and Poria placenta were studied by determining the evolution of (14)CO(2) from a non-phenolic lignin model, beta-O-4 dimer, [O(14)CH(3)]-labelled at position 4 in the A ring (model I), and from [O(14)CH(3)]-labelled vanillic acid (model II). The fungi were grown under oxygen or air atmosphere on an agar medium with or without spruce sapwood blocks. The dimeric model (I) was impregnated onto agar or wood block in cultures to clarify the possible effect of wood as growth substrate. In the case of vanillic acid (model II), birch wood was used. The effect of supplemented nutrient nitrogen (2 mM N) and glucose (0.1 or 1.0% w/v) on demethoxylation was also studied. G. trabeum enhanced the production of (14)CO(2) from the dimer in the presence of spruce wood blocks. It released (14)CO(2) from the methoxyl groups giving 30-60% of the applied activity in 8 weeks. P. placenta produced almost 30% (14)CO(2 )from vanillic acid (model II) in 9 weeks under oxygen, but from the methoxyl group of the dimer only 3% of (14)CO(2) was evolved in 4 weeks. The biomasses determined as ergosterol assay showed variation from 14 to 226 microg g(-1) dry weight of agar, and 2 to 9 microg g(-1 )of wood, but they did not correlate with the production of (14)CO(2). The results indicate that these brown-rot fungi possess different mechanisms for demethoxylation.  相似文献   

6.
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT.  相似文献   

7.
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT.  相似文献   

8.
Ciprofloxacin (CIP), a fluoroquinolone antibacterial drug, is widely used in the treatment of serious infections in humans. Its degradation by basidiomycetous fungi was studied by monitoring 14CO2 production from [14C]CIP in liquid cultures. Sixteen species inhabiting wood, soil, humus, or animal dung produced up to 35% 14CO2 during 8 weeks of incubation. Despite some low rates of 14CO2 formation, all species tested had reduced the antibacterial activity of CIP in supernatants to between 0 and 33% after 13 weeks. Gloeophyllum striatum was used to identify the metabolites formed from CIP. After 8 weeks, mycelia had produced 17 and 10% 14CO2 from C-4 and the piperazinyl moiety, respectively, although more than half of CIP (applied at 10 ppm) had been transformed into metabolites already after 90 h. The structures of 11 metabolites were elucidated by high-performance liquid chromatography combined with electrospray ionization mass spectrometry and 1H nuclear magnetic resonance spectroscopy. They fell into four categories as follows: (i) monohydroxylated congeners, (ii) dihydroxylated congeners, (iii) an isatin-type compound, proving elimination of C-2, and (iv) metabolites indicating both elimination and degradation of the piperazinyl moiety. A metabolic scheme previously described for enrofloxacin degradation could be confirmed and extended. A new type of metabolite, 6-defluoro-6-hydroxy-deethylene-CIP, provided confirmatory evidence for the proposed network of congeners. This may result from sequential hydroxylation of CIP and its congeners by hydroxyl radicals. Our findings reveal for the first time the widespread potential for CIP degradation among basidiomycetes inhabiting various environments, including agricultural soils and animal dung.  相似文献   

9.
The basidiomycetous fungus Nematoloma frowardii produced manganese peroxidase (MnP) as the predominant ligninolytic enzyme during solid-state fermentation (SSF) of wheat straw. The purified enzyme had a molecular mass of 50 kDa and an isoelectric point of 3.2. In addition to MnP, low levels of laccase and lignin peroxidase were detected. Synthetic 14C-ring-labelled lignin (14C-DHP) was efficiently degraded during SSF. Approximately 75% of the initial radioactivity was released as 14CO2, while only 6% was associated with the residual straw material, including the well-developed fungal biomass. On the basis of this finding we concluded that at least partial extracellular mineralization of lignin may have occurred. This conclusion was supported by the fact that we detected high levels of organic acids in the fermented straw (the maximum concentrations in the water phases of the straw cultures were 45 mM malate, 3.5 mM fumarate, and 10 mM oxalate), which rendered MnP effective and therefore made partial direct mineralization of lignin possible. Experiments performed in a cell-free system, which simulated the conditions in the straw cultures, revealed that MnP in fact converted part of the 14C-DHP to 14CO2 (which accounted for up to 8% of the initial radioactivity added) and 14C-labelled water-soluble products (which accounted for 43% of the initial radioactivity) in the presence of natural levels of organic acids (30 mM malate, 5 mM fumarate).  相似文献   

10.
S Kawai  K A Jensen  Jr  W Bao    K E Hammel 《Applied microbiology》1995,61(9):3407-3414
Lignin model dimers are valuable tools for the elucidation of microbial ligninolytic mechanisms, but their low molecular weight (MW) makes them susceptible to nonligninolytic intracellular metabolism. To address this problem, we prepared lignin models in which unlabeled and alpha-14C-labeled beta-O-4-linked dimers were covalently attached to 8,000-MW polyethylene glycol (PEG) or to 45,000-MW polystyrene (PS). The water-soluble PEG-linked model was mineralized extensively in liquid medium and in solid wood cultures by the white rot fungus Phanerochaete chrysosporium, whereas the water-insoluble PS-linked model was not. Gel permeation chromatography showed that P. chrysosporium degraded the PEG-linked model by cleaving its lignin dimer substructure rather than its PEG moiety. C alpha-C beta cleavage was the major fate of the PEG-linked model after incubation with P. chrysosporium in vivo and also after oxidation with P. chrysosporium lignin peroxidase in vitro. The brown rot fungus Gloeophyllum trabeum, which unlike P. chrysosporium lacks a vigorous extracellular ligninolytic system, was unable to degrade the PEG-linked model efficiently. These results show that PEG-linked lignin models are a marked improvement over the low-MW models that have been used in the past.  相似文献   

11.
Degradation of anthracene by selected white rot fungi   总被引:5,自引:0,他引:5  
Abstract Approximately 60% of the originally supplied anthracene (AC) was degraded in ligninolytic stationary cultures of selected white rot fungi within 21 days. All the white rot fungi tested oxidized AC to anthraquinone (AQ). Unlike Phanerochaete chrysosporium and strain Px, with Pleurotus ostreatus, Coriolopsis polyzona and Trametes versicolor , AQ did not accumulate in the cultures, indicating that AQ was degraded further and its degradation did not appear to be a rate-limiting step. However, P. ostreatus and C. polyzona failed to degrade AQ in the absence of AC. P. ostreatus, T. versicolor and strain Px did not produce lignin peroxidase (ligninase) (LIP) under the test conditions but oxidized AC to AQ suggesting that white rot fungi produce enzyme(s) other than LIP capable of oxidizing compounds with high ionization potential like AC. Moreover, in the case of Ph. chrysosporium and C. polyzona , AC degradation started earlier than the production of LIP. Veratryl alcohol (VA) seemed to be playing a role in AC oxidation catalyzed by LIP in Ph. chrysosporium .  相似文献   

12.
Due to their outstanding capability of degrading the recalcitrant biomacromolecule lignin, white rot fungi have been attracting interest for several technological applications in mechanical pulping and wood surface modification. However, little is known about the time course of delignification in early stages of colonisation of wood by these fungi. Using a Fourier transform near infrared (FT-NIR) spectroscopic technique, lignin loss of sterilised spruce wood shavings (0.4–2.0 mm particle size) that had been degraded by various species of white rot fungi could be monitored already during the first 2 weeks. The delignification kinetics of Dichomitus squalens, three Phlebia species (Phlebia brevispora, Phlebia radiata and Phlebia tremellosa), three strains of Ceriporiopsis subvermispora as well as the white rot ascomycete Hypoxylon fragiforme and the basidiomycete Oxyporus latemarginatus were determined. Each of the fungi tested was able to reduce the lignin content of spruce wood significantly during the first week. The amount of delignification achieved by the selected white rot fungi after 2 weeks ranged from 7.2% for C. subvermispora (FPL 105.752) to 2.5% for P. radiata. Delignification was significant (P = 95%) already after 3 days treatment with C. subvermispora and P. tremellosa. Activities of extracellular ligninolytic enzymes (laccase, manganese peroxidase and/or lignin peroxidase), expressed by each of the tested fungi, were determined. Lignin was degraded when peroxidase activity was detected in the fungal cultures, but only a low level of correlation between enzyme activities and the extent of delignification was found.  相似文献   

13.
Brown rot fungi uniquely degrade wood by creating modifications thought to aid in the selective removal of polysaccharides by an incomplete cellulase suite. This naturally successful mechanism offers potential for current bioprocessing applications. To test the efficacy of brown rot cellulases, southern yellow pine wood blocks were first degraded by the brown rot fungus Gloeophyllum trabeum for 0, 2, 4, and 6 weeks. Characterization of the pine constituents revealed brown rot decay patterns, with selective polysaccharide removal as lignin compositions increased. G. trabeum liquid and solid state cellulase extracts, as well as a commercial Trichoderma reesei extract (Celluclast 1.5 L), were used to saccharify this pretreated material, using β-glucosidase amendment to remove limitation of cellobiose-to-glucose conversion. Conditions varied according to source and concentration of cellulase extract and to pH (3.0 vs. 4.8). Hydrolysis yields were maximized using solid state G. trabeum extracts at a pH of 4.8. However, the extent of glucose release was low and was not significantly altered when cellulase loading levels were increased threefold. Furthermore, Celluclast 1.5 L continually outperformed G. trabeum cellulase extracts, although extent of glucose release never exceeded 22.0%. Results suggest methodological advances for utilizing crude G. trabeum cellulases and imply that the suboptimal hydrolysis levels obtained with G. trabeum and Celluclast 1.5 L cellulases, even at high loading levels, may be due to brown rot modifications insufficiently distributed throughout the pretreated material.  相似文献   

14.
Fungal biodegradation of lignopolystyrene graft copolymers.   总被引:2,自引:1,他引:1       下载免费PDF全文
White rot basidiomycetes were able to biodegrade styrene (1-phenylethene) graft copolymers of lignin containing different proportions of lignin and polystyrene [poly(1-phenylethylene)]. The biodegradation tests were run on lignin-styrene copolymerization products which contained 10.3, 32.2, and 50.4% (wt/wt) lignin. The polymer samples were incubated with the white rot fungi Pleurotus ostreatus, Phanerochaete chrysosporium, and Trametes versicolor and the brown rot fungus Gloeophyllum trabeum. White rot fungi degraded the plastic samples at a rate which increased with increasing lignin content in the copolymer sample. Both polystyrene and lignin components of the copolymer were readily degraded. Polystyrene pellets were not degradable in these tests. Degradation was verified for both incubated and control samples by weight loss, quantitative UV spectrophotometric analysis of both lignin and styrene residues, scanning electron microscopy of the plastic surface, and the presence of enzymes active in degradation during incubation. Brown rot fungus did not affect any of the plastics. White rot fungi produced and secreted oxidative enzymes associated with lignin degradation in liquid media during incubation with lignin-polystyrene copolymer.  相似文献   

15.
Progressive changes in solubility characteristics and lignin content of Pinus radiata sapwood were assessed when small blocks were subjected to decay by brown (Gloeophyllum trabeum) and white (Perenniporia tephropora) rot fungi. The brown rot species removed lignin in approximate proportion to weight loss up to 10%; thereafter the amount of lignin altered little. In contrast, the decline in lignin content was near linear for P. tephropora. Increases in solubility (particularly with hot water and dilute alkali), in sugar content and in the acidity of aqueous extracts were recorded in wood blocks decayed to 15–20% weight loss. While these effects were more pronounced in samples decayed by G. trabeum, it appears that with both organisms structural components were degraded faster than the products could be utilised. In this case, cell wall chemistry may not have been a major determinant of weight losses.  相似文献   

16.
White rot basidiomycetes were able to biodegrade styrene (1-phenylethene) graft copolymers of lignin containing different proportions of lignin and polystyrene [poly(1-phenylethylene)]. The biodegradation tests were run on lignin-styrene copolymerization products which contained 10.3, 32.2, and 50.4% (wt/wt) lignin. The polymer samples were incubated with the white rot fungi Pleurotus ostreatus, Phanerochaete chrysosporium, and Trametes versicolor and the brown rot fungus Gloeophyllum trabeum. White rot fungi degraded the plastic samples at a rate which increased with increasing lignin content in the copolymer sample. Both polystyrene and lignin components of the copolymer were readily degraded. Polystyrene pellets were not degradable in these tests. Degradation was verified for both incubated and control samples by weight loss, quantitative UV spectrophotometric analysis of both lignin and styrene residues, scanning electron microscopy of the plastic surface, and the presence of enzymes active in degradation during incubation. Brown rot fungus did not affect any of the plastics. White rot fungi produced and secreted oxidative enzymes associated with lignin degradation in liquid media during incubation with lignin-polystyrene copolymer.  相似文献   

17.
It is often proposed that brown rot basidiomycetes use extracellular reactive oxygen species (ROS) to accomplish the initial depolymerization of cellulose in wood, but little evidence has been presented to show that the fungi produce these oxidants in physiologically relevant quantities. We used [(14)C]phenethyl polyacrylate as a radical trap to estimate extracellular ROS production by two brown rot fungi, Gloeophyllum trabeum and Postia placenta, that were degrading cellulose. Both fungi oxidized aromatic rings on the trap to give monohydroxylated and more polar products in significant yields. All of the cultures contained 2,5-dimethoxyhydroquinone, a fungal metabolite that has been shown to drive Fenton chemistry in vitro. These results show that extracellular ROS occur at significant levels in cellulose colonized by brown rot fungi, and suggest that hydroquinone-driven ROS production may contribute to decay by diverse brown rot species.  相似文献   

18.
Toluene and the three isomers of xylene were completely mineralized to CO2 and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was gasoline-contaminated sediment from Seal Beach, Calif. Evidence confirming that sulfate was the terminal electron acceptor is presented. Benzene and ethylbenzene were not degraded under the experimental conditions used. Successive transfers of the mixed cultures that were enriched from aquifer sediments retained the ability to degrade toluene and xylenes. Greater than 90% of 14C-labeled toluene or 14C-labeled o-xylene was mineralized to 14CO2. The doubling time for the culture grown on toluene or m-xylene was about 20 days, and the cell yield was about 0.1 to 0.14 g of cells (dry weight) per g of substrate. The accumulation of sulfide in the cultures as a result of sulfate reduction appeared to inhibit degradation of aromatic hydrocarbons.  相似文献   

19.
Toluene and the three isomers of xylene were completely mineralized to CO2 and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was gasoline-contaminated sediment from Seal Beach, Calif. Evidence confirming that sulfate was the terminal electron acceptor is presented. Benzene and ethylbenzene were not degraded under the experimental conditions used. Successive transfers of the mixed cultures that were enriched from aquifer sediments retained the ability to degrade toluene and xylenes. Greater than 90% of 14C-labeled toluene or 14C-labeled o-xylene was mineralized to 14CO2. The doubling time for the culture grown on toluene or m-xylene was about 20 days, and the cell yield was about 0.1 to 0.14 g of cells (dry weight) per g of substrate. The accumulation of sulfide in the cultures as a result of sulfate reduction appeared to inhibit degradation of aromatic hydrocarbons.  相似文献   

20.
H G Wetzstein  N Schmeer    W Karl 《Applied microbiology》1997,63(11):4272-4281
The degradation of enrofloxacin, a fluoroquinolone antibacterial drug used in veterinary medicine, was investigated with the brown rot fungus Gloeophyllum striatum. After 8 weeks, mycelia suspended in a defined liquid medium had produced 27.3, 18.5, and 6.7% 14CO2 from [14C]enrofloxacin labeled either at position C-2, at position C-4, or in the piperazinyl moiety, respectively. Enrofloxacin, applied at 10 ppm, was transformed into metabolites already after about 1 week. The most stable intermediates present in 2-day-old supernatants were analyzed by high-performance liquid chromatography combined with electrospray ionization mass spectrometry. Eight of 11 proposed molecular structures could be confirmed by 1H nuclear magnetic resonance spectroscopy or by cochromatography with reference compounds. We identified (i) 3-, 6-, and 8-hydroxylated congeners of enrofloxacin, which have no or only very little residual antibacterial activity; (ii) 5,6- (or 6,8-), 5,8-, and 7,8-dihydroxylated congeners, which were prone to autoxidative transformation; (iii) an isatin-type compound as well as an anthranilic acid derivative, directly demonstrating cleavage of the heterocyclic core of enrofloxacin; and (iv) 1-ethylpiperazine, the 7-amino congener, and desethylene-enrofloxacin, representing both elimination and degradation of the piperazinyl moiety. The pattern of metabolites implies four principle routes of degradation which might be simultaneously employed. Each route, initiated by either oxidative decarboxylation, defluorination, hydroxylation at C-8, or oxidation of the piperazinyl moiety, may reflect an initial attack by hydroxyl radicals at a different site of the drug. During chemical degradation of [4-14C]enrofloxacin with Fenton's reagent, five confirmatory metabolites, contained in groups i and iv, were identified. These findings provide new evidence in support of the hypothesis that brown rot fungi may be capable of producing hydroxyl radicals, which could be utilized to degrade wood and certain xenobiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号