首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The purpose of this study is to evaluate the association of the location and geometric parameters of intracranial aneurysm with the risk of rupture. A retrospective study consisted of 284 patients diagnosed with saccular intracranial aneurysm between January 2009 and May 2013 at Wuxi Third People’s Hospital was conducted. 3D digital subtraction angiography images from all patients (240 ruptured, 44 unruptured) were obtained and analyzed. The location of the aneurysms and the 3D geometric parameters including the aneurysm depth, the neck size, diameter of the parent artery, aneurysm angle, aspect radio, size ratio, and the neck-to-parent-artery ratio (NPR) were compared between ruptured and unruptured groups. Results: In ruptured group, anterior communicating artery, posterior communicating artery (PCoA), and the bifurcation of internal carotid artery (ICA) were the top three locations for aneurysm occurrence, accounting for 40.00, 30.42, and 12.08 % respectively. While in the unruptured group, top three locations were PCoA (36.36 %), posterior cerebral circulation (18.18 %), and the bifurcation of the ICA (15.91 %). Distribution of aneurysm location is significantly different (p < 0.05) between ruptured and unruptured aneurysms. For the 3D geometric parameters characterizing aneurysm, aneurysm depth (p < 0.05), parent artery diameter (p < 0.05), aneurysm angle (p < 0.01), aspect ratio (p < 0.01), and size ratio (p < 0.01) all showed a significant difference between ruptured and unruptured group. No difference was found in the neck size and the NPR ratio between the two groups. 3D geometric parameters such as aneurysm depth, parent artery diameter, aneurysm angle, aspect ratio, and size ratio can be helpful in evaluating the rupture risk of saccular intracranial aneurysm for a better prevention and prognosis.  相似文献   

2.
Pulsatile flow fields in a cerebrovascular side-wall aneurysm model with a wide ostium after stenting are presented in terms of particle tracking velocimetry measurements and flow visualization. Among the stent parameters the shape, helix versus mesh, was selected to study its effect on the changes of intraaneurysmal hemodynamics for the reference of minimally invasive endovascular aneurysm treatment. The blocking ratio of the stents was fixed at 30%. The Womersley number was 3.9 and the mean, peak, and minimal Reynolds numbers based on the bulk average velocity and diameter of the parent vessel were 600, 850, and 300, respectively. Four consecutive flow-rate phases were selected to characterize the intra-aneurysmal flow. The results are characterized in terms of velocity vector field, regional average velocity, and intra-aneurysmal vorticity/circulation/wall shear stress. It is found that the hemodynamic features inside the aneurysm alter markedly with the shape of the stent and the size of the orifice. Both stents investigated induce favorable changes in the intra-aneurysmal flow stasis as well as direction and undulation of wall shear stresses. A comparison of the results of the helix to mesh stent shows that the former is more favorable for endovascular treatment.  相似文献   

3.
Endovascular aneurysm repair (EVAR) of abdominal aortic aneurysms results in redirection of blood through the deployed endograft (EG). Even though EVAR is clinically effective, the absolute flow restoration is not warranted. Our purpose was to compare the physiological with the post-EVAR infrarenal flow conditions. We developed patient-specific models based on computed tomography data of five healthy volunteers and ten patients treated with the Endurant® stent-graft system. Wall shear stress (WSS), helicity, pressure and velocity fields were calculated using computational fluid dynamics. The results showed a decrease of peak WSS on the part of the EG that resides in the iliac arteries, compared to the physiological value (p = 0.01). At the abdominal part, the average helicity seems to increase after EVAR, while at the iliac arteries part, the intensity of helical flow seems physiological. Pressure drop and peak velocity in the iliac arteries part are lower than the physiological values (p = 0.04). The comparison revealed that most hemodynamic properties converge to normal levels at the abdominal part whereas statistically significant variations were observed in the iliac arteries part. The delineation of the differences between physiological and postoperative flow data could pave the way for the improvement of EG designs.  相似文献   

4.
Endovascular stents are being commonly used to treat cerebral wide-necked aneurysms recently. The effect of a stent placed in the parent artery is not only to protect the parent artery from occlusion, due to extension of coils and thrombosis, but also to act as flow diverter to vary the haemodynamics in the aneurysm. In this article, two idealised cerebral wide-necked aneurysms were created, one was sidewall aneurysm with curved parent vessel and the other was terminal aneurysm with the bifurcated parent vessel. The plexiglass models of the two aneurysms were 'treated' with commercial porous intravascular stents. The stented physical models were scanned by Micro-CT and the numerical models of the two idealised cerebral wide-necked aneurysms after stent placement were constructed from the scanned image files. The pulsatile flow of non-Newtonian fluid inside the models was simulated by using computational fluid dynamics package. From the simulated flow dynamics, various haemodynamic characteristics such as velocity contours, wall shear stress and oscillatory shear index (OSI) were computed. The velocity of the jet entering the sacs reduced after stent was deployed across the necks of both sidewall and terminal aneurysms; the wall shear stress on the distal neck of sidewall aneurysm reduced, the wall shear stress on the dome of the terminal aneurysm increased and the OSI on the dome of the terminal aneurysm reduced. Therefore, stent placement not only promotes thrombus formation in both aneurysm models but also reduces the regrowth risk of the sidewall aneurysm and the rupture risk of the terminal aneurysm.  相似文献   

5.
Endovascular stents are being commonly used to treat cerebral wide-necked aneurysms recently. The effect of a stent placed in the parent artery is not only to protect the parent artery from occlusion, due to extension of coils and thrombosis, but also to act as flow diverter to vary the haemodynamics in the aneurysm. In this article, two idealised cerebral wide-necked aneurysms were created, one was sidewall aneurysm with curved parent vessel and the other was terminal aneurysm with the bifurcated parent vessel. The plexiglass models of the two aneurysms were ‘treated’ with commercial porous intravascular stents. The stented physical models were scanned by Micro-CT and the numerical models of the two idealised cerebral wide-necked aneurysms after stent placement were constructed from the scanned image files. The pulsatile flow of non-Newtonian fluid inside the models was simulated by using computational fluid dynamics package. From the simulated flow dynamics, various haemodynamic characteristics such as velocity contours, wall shear stress and oscillatory shear index (OSI) were computed. The velocity of the jet entering the sacs reduced after stent was deployed across the necks of both sidewall and terminal aneurysms; the wall shear stress on the distal neck of sidewall aneurysm reduced, the wall shear stress on the dome of the terminal aneurysm increased and the OSI on the dome of the terminal aneurysm reduced. Therefore, stent placement not only promotes thrombus formation in both aneurysm models but also reduces the regrowth risk of the sidewall aneurysm and the rupture risk of the terminal aneurysm.  相似文献   

6.
The rupture risk of unruptured intracranial aneurysms is known to be dependent on the size of the aneurysm. However, the association of morphological characteristics with ruptured aneurysms has not been established in a systematic and location specific manner for the most common aneurysm locations. We evaluated posterior communicating artery (PCoA) aneurysms for morphological parameters associated with aneurysm rupture in that location. CT angiograms were evaluated to generate 3-D models of the aneurysms and surrounding vasculature. Univariate and multivariate analyses were performed to evaluate morphological parameters including aneurysm volume, aspect ratio, size ratio, distance to ICA bifurcation, aneurysm angle, vessel angles, flow angles, and vessel-to-vessel angles. From 2005–2012, 148 PCoA aneurysms were treated in a single institution. Preoperative CTAs from 63 patients (40 ruptured, 23 unruptured) were available and analyzed. Multivariate logistic regression revealed that smaller volume (p = 0.011), larger aneurysm neck diameter (0.048), and shorter ICA bifurcation to aneurysm distance (p = 0.005) were the most strongly associated with aneurysm rupture after adjusting for all other clinical and morphological variables. Multivariate subgroup analysis for patients with visualized PCoA demonstrated that larger neck diameter (p = 0.018) and shorter ICA bifurcation to aneurysm distance (p = 0.011) were significantly associated with rupture. Intracerebral hemorrhage was associated with smaller volume, larger maximum height, and smaller aneurysm angle, in addition to lateral projection, male sex, and lack of hypertension. We found that shorter ICA bifurcation to aneurysm distance is significantly associated with PCoA aneurysm rupture. This is a new physically intuitive parameter that can be measured easily and therefore be readily applied in clinical practice to aid in the evaluation of patients with PCoA aneurysms.  相似文献   

7.
Effects of stent porosity on hemodynamics in a sidewall aneurysm model   总被引:1,自引:0,他引:1  
Computation and experiment have been complementarily performed to study the fluid flow inside a stented lateral aneurysm anchored on the straight parent vessel. The implicit solver was based on the time-dependent incompressible Navier-Stokes equations of laminar flow. Solutions were generated by a cell-center finite-volume method that used second-order upwind and second-order center flux difference splitting for the convection and diffusion term, respectively. The second-order Crank-Nicolson method was used in the time integration term. Experimental techniques used were flow visualization (FV) and particle tracking velocimetry (PTV). Experimentally, the straight afferent vessel had an inner diameter 10mm. The diameters of the aneurysmal orifice, neck, and fundus were 14, 10, and 15 mm, respectively, and the distance between the orifice and dome measured 20mm. A 30 mm long helix-shaped stent was tested. Four stent porosities of 100%, 70%, 50%, and 25% were examined. Volume-flow rate waveform of a cerebral artery was considered with a maximum Reynolds number of 250 and Womersley number of 3.9. Results are presented in terms of the pulsatile main and secondary flow velocity vector fields, the volume inflow rates into the aneurysm, and the wall shear stress (WSS) and wall pressure at the aneurysm dome. Some comparisons of computed results with the present FV and PTV results and with the data available from the literature are also made. The maximum flow velocity inside the aneurysm ostium and the WSS in the dome region at the peak flow can, respectively, be suppressed to less than 5% of the parent vessel bulk velocity (or 20% of the unstented case) and 8% of the unstented case if the stent porosity is smaller than 40% (about the porosity of the two-layer stents). In general, the three-layer stents seem not as effective as the two-layer stents in reducing the magnitude of aneurysm inflow rate and WSS.  相似文献   

8.
9.
In this study, the genetic variability and relationships among wild and cultivated pomegranate genotypes from the north of Iran were investigated by morphological characters and RAPD molecular markers. Principal component analysis showed that the first three components explained 61.64 % of the total morphological variation for studied genotypes. Fruit neck diameter, anthocyanin index, TSS, aril juice, fruit flavor index, petiole length, fruit peel thickness and seed hardness were predominant in the first component and contributed most of the total variation. Fruit characteristics such as titratable acidity were negatively correlated (r = ?0.56) with TSS (r = ?0.56) and pH (r = ?0.86) and also, seed hardness showed negative correlation with aril length and aril diameter. Clustering from morphological data allocated individuals into two main clusters with high variation. Two hundred and twenty-nine fragments were scored of which 174 of them were polymorphic with 76.9 % polymorphism. Genetic similarity ranged from 0.15 to 0.78 with an average of 0.42, indicating high genetic variation among studied genotypes. High molecular and morphological variability indicated that this germplasm includes rich and valuable plant materials for pomegranate breeding.  相似文献   

10.
Endovascular coiling is an acceptable treatment of intracranial aneurysms, yet long term follow-ups suggest that endovascular coiling fails to achieve complete aneurysm occlusions particularly in wide-neck and giant aneurysms. Placing of a stentlike device across the aneurysm neck may be sufficient to occlude the aneurysm by promoting intra-aneurysmal thrombosis; however, conclusive evidence of its efficacy is still lacking. In this study, we investigate in vitro the efficacy of custom designed flow divertors that will be subsequently implanted in a large cohort of animals. The aim of this study is to provide a detailed database against which in vivo results can be analyzed. Six custom designed flow divertors were fabricated and tested in vitro. The design matrix included three different porosities (75%, 70%, and 65%). For each porosity, there were two divertors with one having a nominal pore density double than that of the other. To quantify efficacy, the divertors were implanted in a compliant elastomeric model of an elastase-induced aneurysm model in rabbit and intra-aneurysmal flow changes were evaluated by particle image velocimetry (PIV). PIV results indicate a marked reduction in intra-aneurysmal flow activity after divertor implantation in the innominate artery across the aneurysm neck. The mean hydrodynamic circulation after divertor implantation was reduced to 14% or less of the mean circulation in the control and the mean intra-aneurysmal kinetic energy was reduced to 29% or less of its value in the control. The intra-aneurysmal wall shear rate in this model is low and implantation of the flow divertor did not change the wall shear rate magnitude appreciably. This in vitro experiment evaluates the characteristics of local flow phenomena such as hydrodynamic circulation, kinetic energy, wall shear rate, perforator flow, and changes of these parameters as a result of implantation of stentlike flow divertors in an elastomeric replica of elastase-induced saccular aneurysm model in rabbit. These initial findings offer a database for evaluation of in vivo implantations of such devices in the animal model and help in further development of cerebral aneurysm bypass devices.  相似文献   

11.
The study purpose is to optimize modeling parameters, specifically segmentation spacing and centerline extraction, to efficiently construct accurate 3D aortic models. Models are constructed by centerline extraction and orthogonal 2D segmentations. We examine the effect of segmentation interval spacing (2, 1, 0.5, 0.25 cm) and orthogonal segmentation and centerline extraction iteration (one, two, three iterations) for constructing models of Healthy, Tortuous, Aneurysmal, and Dissected human thoracic aortas. Aortic arclength, curvature, and cross-sectional axis ratio were computed to compare variations in modeling parameters. Centerline arclength is precisely characterized for all aortas with a single iteration of centerline extraction (≤1% deviation), however, complex anatomies required 1 cm segmentation intervals whereas the Healthy aorta only required 2 cm intervals. Centerline curvature is more sensitive to modeling methods, requiring 1 cm intervals for ≤5% deviation in peak curvature for the three diseased anatomies, and two iterations of segmentation and centerline extraction for the Aneurysmal and Dissected aortas. Accurate lumen cross-sectional characterization required 1 or 0.5 cm segmentation intervals, and two or three segmentation and centerline iterations, with greater refinement needed for more complex geometries. Depending on the geometric characteristic and complexity of anatomy and pathology, different levels of segmentation interval refinement and iterations of segmentation and centerline extraction are required.  相似文献   

12.
Flow dynamics play an important role in the pathogenesis and treatment of intracranial aneurysms. The evaluation of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils, and the temporal and spatial variations of wall shear stress in the aneurysm are correlated with its growth and rupture. This numerical investigation describes the hemodynamic in two models of terminal aneurysm of the basilar artery. Aneurysm models with a aspect ratio of 1.0 and 1.67 were studied. Each model was subject to physiological representative waveform of inflow for a mean Reynolds number of 560. The effects of symmetric and asymmetric outflow conditions in the branches were studied.  相似文献   

13.
Cerebral aneurysms constitute a major medical challenge as treatment options are limited and often associated with high risks. Statistically, up to 3% of patients with a brain aneurysm may suffer from bleeding for each year of life. Eight percent of all strokes are caused by ruptured aneurysms. In order to prevent this rupture, endovascular stenting using so called flow diverters is increasingly being regarded as an alternative to the established coil occlusion method in minimally invasive treatment. Covering the neck of an aneurysm with a flow diverter has the potential to alter the hemodynamics in such a way as to induce thrombosis within the aneurysm sac, stopping its further growth, preventing its rupture and possibly leading to complete resorption. In the present study the influence of different flow diverters is quantified considering idealized patient configurations, with a spherical sidewall aneurysm placed on either a straight or a curved parent vessel. All important hemodynamic parameters (exchange flow rate, velocity, and wall shear stress) are determined in a quantitative and accurate manner using computational fluid dynamics when varying the key geometrical properties of the aneurysm. All simulations are carried out using an incompressible, Newtonian fluid with steady conditions. As a whole, 72 different cases have been considered in this systematic study. In this manner, it becomes possible to compare the efficiency of different stents and flow diverters as a function of wire density and thickness. The results show that the intra-aneurysmal flow velocity, wall shear stress, mean velocity, and vortex topology can be considerably modified thanks to insertion of a suitable implant. Intra-aneurysmal residence time is found to increase rapidly with decreasing stent porosity. Of the three different implants considered in this study, the one with the highest wire density shows the highest increase of intra-aneurysmal residence time for both the straight and the curved parent vessels. The best hemodynamic modifications are always obtained for a small aneurysm diameter.  相似文献   

14.
It recently has been shown that the aspect ratio (dome/neck) of an aneurysm correlates well with intraaneurysmal blood flow, and the aneurysms of aspect ratio larger than 1.6 carry a higher risk of rupture. We examined the effect of aspect ratio (AR) on intra-aneurysmal flow based on flow visualization studies using various aneurysm models. A flow visualization study with the milk tracing method was performed on ten different aneurysm models, and we calculated the mean transit time (MTT) for each aneurysm model at different flow ratios into the branches. The AR and the MTT for each aneurysm were significantly correlated. It was confirmed that the larger the AR was, the longer the MTT became. An asymetric flow ratio induced smooth circulating flow along the aneurysm wall, but a symmetric flow ratio raised complexed vortices at the neck, resulting in longer MTT for the aneurysm model. Aneurysms growing more than AR 2.0 showed very slow flow, and the bleb at the 2.0 AR aneurysm model showed almost stagnant flow, which is considered a characteristic morphology for rupture. Hemodynamics in the aneurysm larger than AR 2.0 and an accompanying daughter aneurysm at the dome definitely contribute to thrombus formation.  相似文献   

15.
To investigate the mechanical mechanisms behind tumor cell arrest in the microvasculature, we injected fluorescently labeled human breast carcinoma cells or similarly sized rigid beads into the systemic circulation of a rat. Their arrest patterns in the microvasculature of mesentery were recorded and quantified. We found that 93 % of rigid beads were arrested either at arteriole–capillary intersections or in capillaries. Only 3 % were at the capillary–postcapillary venule intersections and in postcapillary venules. In contrast, most of the flexible tumor cells were either entrapped in capillaries or arrested at capillary or postcapillary venule–postcapillary venule intersections and in postcapillary venules. Only 12 % of tumor cells were arrested at the arteriole–capillary intersections. The differential arrest and adhesion of tumor cells and microbeads in the microvasculature was confirmed by a $\chi ^{2}$ test ( $p<0.001$ ). These results demonstrate that mechanical trapping was responsible for almost all the arrest of beads and half the arrest of tumor cells. Based on the measured geometry and blood flow velocities at the intersections, we also performed a numerical simulation using commercial software (ANSYS CFX 12.01) to depict the detailed distribution profiles of the velocity, shear rate, and vorticity at the intersections where tumor cells preferred to arrest and adhere. Simulation results reveal the presence of localized vorticity and shear rate regions at the turning points of the microvessel intersections, implying that hemodynamic factors play an important role in tumor cell arrest in the microcirculation. Our study helps elucidate long-debated issues related to the dominant factors in early-stage tumor hematogenous metastasis.  相似文献   

16.
Background and purpose: Hemodynamic parameters are important in the pathogenesis, evolution and rupture of intracranial aneurysm. Energy loss (EL) has been applied for the rupture risk prediction of artery aneurysms recently. We proposed a new EL and further investigate its effects on the rupture of aneurysms. Materials and methods: Sixty-four patient-specific ophthalmic aneurysm datasets were divided into ruptured and unruptured groups based on their clinical history. Based on patient-specific 3D-DSA data, realistic models were retrospectively reconstructed and then analyzed by using computational fluid dynamic method. Results: The flow field feature EL in ruptured cases was significantly higher than that in unruptured cases. The average wall shear stress (WSS) and the maximum WSS in ruptured cases were higher than those in unruptured cases. Modified pressure loss coefficient (PLCM) in ruptured cases was slight higher than that in unruptured cases but the difference has no statistical significance. Multivariate logistic regression analysis demonstrated flow field feature EL (p < 0.05) and the maximum WSS (p < 0.05) were the only independently significant variables to predict rupture of ophthalmic aneurysm. There were no differences in PLCM, the maximum oscillatory shear index (OSI), the average OSI and AR between the two groups. Conclusion: Flow field feature EL may be a reliable factor to predict the rupture risk of aneurysms.  相似文献   

17.
Danube main channel deep pools are in-stream habitats of high ecological relevance. We used dual-frequency identification sonar to investigate seasonal and diel fish abundance in two hydrodynamically different deep pools in the main channel of the Danube River in 2008. In general, fish of different species were present in both deep pools throughout the year, irrespective of water level. High fish abundance was recorded during autumn and winter, low abundance during spring and summer. During low discharge and low temperature and particularly during low flow velocity, low kinetic energy and low shear stress, high fish abundance in densely packed aggregations were observed, a clear indication for the refuge capacity of deep pools. In contrast, during turbulent hydraulic conditions with high flow velocity, high turbulent kinetic energy and high shear stress, low fish abundance occurred, mainly consisting of single fish, small fish shoals and benthic fish specimens. Furthermore, we could reveal that calm as well as turbulent pools fulfil the requirements as refuge and feeding habitat of eurytopic, piscivorous catfish throughout the year. The application of a multiple linear model based on the hydrological parameters discharge and water temperature as well as the hydraulic parameters flow velocity, turbulent kinetic energy and shear stress provided highly significant evidence between the observed and the expected seasonal fish abundance in the deep pools (R 2 = 0.77, P < 0.001). For the first time these results make clear that the main channel deep pools are important refuge and resource habitats of different species of the Danube fish community. Deep pools are key habitats for the in-stream fish community of the Danube River.  相似文献   

18.
We investigated the flow modifications induced by a large panel of commercial-off-the-shelf (COTS) intracranial stents in an idealized sidewall intracranial aneurysm (IA). Flow velocities in IA silicone model were assessed with and without stent implantation using particle imaging velocimetry (PIV). The use of the recently developed multi-time-lag method has allowed for uniform and precise measurements of both high and low velocities at IA neck and dome, respectively. Flow modification analysis of both regular (RSs) and flow diverter stents (FDSs) was subsequently correlated with relevant geometrical stent parameters. Flow reduction was found to be highly sensitive to stent porosity variations for regular stents RSs and moderately sensitive for FDSs. Consequently, two distinct IA flow change trends, with velocity reductions up to 50% and 90%, were identified for high-porosity RS and low-porosity FDS, respectively. The intermediate porosity (88%) regular braided stent provided the limit at which the transition in flow change trend occurred with a flow reduction of 84%. This transition occurred with decreasing stent porosity, as the driving force in IA neck changed from shear stress to differential pressure. Therefore, these results suggest that stents with intermediate porosities could possibly provide similar flow change patterns to FDS, favourable to curative thrombogenesis in IAs.  相似文献   

19.
In contrast to size, the association of morphological characteristics of intracranial aneurysms with rupture has not been established in a systematic manner. We present an analysis of the morphological variables that are associated with rupture in anterior communicating artery aneurysms to determine site-specific risk variables. One hundred and twenty-four anterior communicating artery aneurysms were treated in a single institution from 2005 to 2010, and CT angiograms (CTAs) or rotational angiography from 79 patients (42 ruptured, 37 unruptured) were analyzed. Vascular imaging was evaluated with 3D Slicer© to generate models of the aneurysms and surrounding vasculature. Morphological parameters were examined using univariate and multivariate analysis and included aneurysm volume, aspect ratio, size ratio, distance to bifurcation, aneurysm angle, vessel angle, flow angle, and parent-daughter angle. Multivariate logistic regression revealed that size ratio, flow angle, and parent-daughter angle were associated with aneurysm rupture after adjustment for age, sex, smoking history, and other clinical risk factors. Simple morphological parameters such as size ratio, flow angle, and parent-daughter angle may thus aid in the evaluation of rupture risk of anterior communicating artery aneurysms.  相似文献   

20.
Background: The Moyamoya disease is a cerebrovascular disease that causes occlusion of the distal end of the internal carotid artery, leading to the formation of multiple tiny collateral arteries. To date, the pathogenesis of Moyamoya is unknown. Improved understanding of the changes to vascular geometry and fluid mechanics of the carotid siphon during disease may improve understanding of the pathogenesis, prognosis techniques and disease management. Methods: A retrospective analysis of Magnetic Resonance Angiography (MRA) images was performed for Moyamoya pediatric patients (MMD) (n = 23) and control (Ctrl) pediatric patients (n = 20). The Ctrl group was composed of patients who complained of headache and had normal MRA. We performed segmentation of MRA images to quantify geometric parameters of the artery. Computational fluid dynamics (CFD) was performed to quantify the hemodynamic parameters. Results: MMD internal carotid and carotid siphons were smaller in cross-sectional areas, and shorter in curved vascular length. Vascular curvature remained constant over age and vascular size and did not change between Ctrl and MMD, but MMD carotid siphon had lower tortuosity in the posterior bend, and higher torsion in the anterior bend. Wall shear stress and secondary flows were significantly lower in MMD, but the ratio of secondary flow kinetic energy to primary flow kinetic energy were similar between MMD and Ctrl. Conclusion: There were alterations to both the geometry and the flow mechanics of the carotid siphons of Moyamoya patients but it is unclear whether hemodynamics is the cause or the effect of morphological changes observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号