首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The most important stage in the making of mutations is a reparation of different DNA damage, including the more deleterious double-strand DNA breaks (DSB). The first stage of adaptive response--fundamental antimutagenic cell reaction, purposeful to reparation for induced DSB repair--is investigated in present work. Non-radioactive in situ hybridization of biotin-labeled DNA probe was used to mark chromosome 1 pericentromeric regions (PR) in G0 human lymphocytes. It was shown that under 3-10 cGy (X-radiation, 160 kV) PR become displaced from a nucleus periphery to inner territory of a nucleus. The moving process realizes during several hours after an irradiation. As far as some non-specific gene repressors are co-localized with chromosome centromeric regions it is possible hypothesizes that the displacement cause changing expression of some genes. It is possible to propose that an absence of radiation induced chromosome locus displacement may be one of causes DSB repair disturbance. This hypothesis was tested by the model. It is assumed that one consequence of the underlying defect may be inappropriate involvement of cell's recombination machinery in the repair of DSB. We studied lymphocytes of patients with hereditary BRCA2 mutation. It is thought that this gene takes part in DSB repair. The significant differences of the PR moving between control samples and the cases were revealed under 10 cGy. Similar results were observed on lymphocytes of patients with Fanconi syndrome. Thus, abnormal moving of interphase nucleus chromosomes conditioned by low-dose irradiation may suggest on imperfect machinery of DSB repair, i.e. genetic risk. We realize that further investigations are needed for definitive conclusion.  相似文献   

2.
During the process of the realization of the bystander effect the trans of the Signal from irradiated cells to the intact cell (bystander cells) happens. So both type of cells (irradiated and intact cells) have the same damages and reactions. There are new data about bystander effect as the transduction mechanism of the adaptive response and we have investigated this phenomenon. There are an incubation of the intact (bystander cells) and the exposed (X-radiation of 10 cGy) human lymphocytes and we analyze the location of the centromeric loci of the first chromosome. We observed hat for the first time that after X-ray exposition of the adaptive doses the transposition of the chromosome loci from the peripheral to the central parts of the nucleus in intact (bystander cell) G0-lymphocytes which were incubated in the growth environment cells with irradiated cells removal. We support that the starting states of the adaptive response is the loci extrication of the matrix, the transposition and the approach homologous chromosomes. This process is necessary for the DNA double strand breaks reparation (in the case of injured dose X-radiation) with the participation of the homologous recombination.  相似文献   

3.
4.
At the initial stages of an adaptive response the transposition of the homologous chromosome loci from the peripheral parts of the nucleus and their approach happens. It is necessary for the repair of DNA double strand breaks in the process of the homologous recombination. Was shown that the chromosome loci transposition and accompanied by the nucleolus activities took place first in the irradiated (X-rays, 10 cGy) G0-lymphocytes, and then in the intact (bystander) cells incubated in the growth medium of irradiated lymphocytes. If there is a bystander effect the quantity of irradiated cells may be three order less than the bystander cells that affirms the great capacity of stress-signalization system. Moreover, the DNA fragments (the factors of stress signaling) were obtained from the growth medium supernatant of the irradiated and of the intact lymphocytes. In other independent experiments they were inoculated into the growth medium of recipient cells. Was demonstrated that there is loci transposition of homologous chromosomes loci and of nucleus activity after introducing the DNA fragments of irradiated cells. After introducing the DNA fragments of non-irradiated cells the both effects were not observed. In the work the characteristics of the obtained factors and the possible ways of stress signaling between the irradiated and the bystander lymphocytes were discussed.  相似文献   

5.
6.
We have measured rejoining kinetics of chromosome breaks using a modified cell fusion-based premature chromosome condensation (PCC) technique in confluent cultures of normal human fibroblasts irradiated at low doses of X-rays. In order to enhance the sensitivity of the fusion-based PCC assay, we added a DNA double strand break (DSB) repair inhibitor wortmannin during the incubation period for PCC/fusion process resulting in a significantly higher yield of G1-type chromosome breaks. The initial number of chromosome breaks (without repair) gave a linear dose response with about 10 breaks per cell per Gy which is about two times higher than the value with the conventional G1-type PCC method. The chromosome rejoining kinetics at 0.5 and 2.0 Gy X-rays reveal a bi-phasic curve with both a fast and a slow component. The fast component (0-30 min) is nearly identical for both doses, but the slow component for 2 Gy kinetics is much slower than that for 0.5 Gy, indicating that the process occurring during this period may be crucial for the ultimate fate of irradiated cells. The chromosome rejoining kinetics obtained here is similar to that of other methods of detecting DNA DSB repair such as the gammaH2AX assay. Our chromosome repair assay is useful for evaluating the accuracy of other assays measuring DNA DSB repair at doses equal or less than 0.5 Gy of ionizing radiation.  相似文献   

7.
The role of DNA double-strand break (DSB) repair in radioresistance of Saccharomyces cerevisiae G1 cells is discussed. The contribution of rapid and slow DNA DSB repair to radioresistance of diploid yeast has been estimated. The contribution of the DNA DSB repair involving no homologous chromosome interaction is shown to be insignificant in comparison with the recombinational repair. The rapid DNA DSB repair efficiency calculation method based on the proposed yeast radiation inactivation model is given. The calculations are in a satisfactory agreement with the experimental data. Possible mechanisms of radiation induction of lethal sectoring in yeast are discussed. This phenomenon is supposed to be due to the DNA DSB processing during vegetative division of irradiated cells. A general scheme of radiation inactivation of yeast cells is proposed.  相似文献   

8.
The genome damage (the frequencies of cells with micronuclei (MN), chromosome aberrations, the level of DNA double-strand breaks (DSB DNA), the concentration of reactive oxygen species (ROS) and 28 immunological parameters have been studied on the blood lymphocytes of Chernobyl accident liquidators. The purpose of this article was the investigation of cytogenetic, molecular changes of blood lymphocytes of irradiated individuals 24 years after accident, examination it there are correlation between genome damage and immunological parameters. It was shown that in lymphocytes of liquidators the frequencies of cells with MN and with all type of chromosome aberrations didn't differ from the lymphocytes of nonirradiated individuals, but the frequency of chromosome aberration type was increased, the level of DSB DNA was increased too. The concentration of ROS is decreased. The percent of cytotoxic CD8(+)-T-lymphocytes, natural killer cells (CD16(+)-lymphocytes), CD3+ CD16+ CD56+ (NK-T-cells), that posses antivirus and antitumor activity--HLA-DR+, regulatory T-lymphocytes (CD4+ CD25+high) in liquidators significantly increases. The level of serum immunoglobulin (Ig A) significantly increases too. The index of immune regulation, meaning of phagocyte neutrophil (FAN) and macrophage activity decreases. In liquidators there are significant correlation between the frequencies of cells with MN and the content of regulatory T-lymphocytes (p < 0.05), between the concentrations of ROS and activated T-lymphocytes. More connection is on the tendency level (p < 0.10): the frequency of chromosome aberrations, the DSB DNA level with natural killer cells and regulatory T-lymphocytes; the frequency of cells with MN and DSB DNA and FAM. We can suppose that genomic instability induced by the liquidators of Chernobyl accident consequences 24 years ago manifests now as increased genome damage and oxidative status decrease that can result in imbalance of cells and humoral immune status, disturbancies of health.  相似文献   

9.
Using the method of filter elution of double stranded DNA under neutral conditions we have shown that most of gamma-ray induced double strand breaks (DSB) are rejoined in both mammalian and bacterial cells. Rejoining also occurs in the G1 phase in V79 Chinese hamster cells and under different growth conditions. Within 8 minutes at 37 C, half the breaks are rejoined. The rejoining in E. coli is equally fast and depends on the presence of DNA ligase. Some of the breaks in E. coli rejoin slowly, and these require rec+. The non-rejoined DSB are distributed over the DNA without any preference for the nucleosomal or the linker structure in the chromosome. Two kinds of DSB rejoining are discriminated, a fast process of DNA ligation and a slower process involving rec functions.  相似文献   

10.
Diploid Saccharomyces cells experiencing a double-strand break (DSB) on one homologous chromosome repair the break by RAD51-mediated gene conversion >98% of the time. However, when extensive homologous sequences are restricted to one side of the DSB, repair can occur by both RAD51-dependent and RAD51-independent break-induced replication (BIR) mechanisms. Here we characterize the kinetics and checkpoint dependence of RAD51-dependent BIR when the DSB is created within a chromosome. Gene conversion products appear within 2 h, and there is little, if any, induction of the DNA damage checkpoint; however, RAD51-dependent BIR occurs with a further delay of 2 to 4 h and cells arrest in response to the G(2)/M DNA damage checkpoint. RAD51-dependent BIR does not require special facilitating sequences that are required for a less efficient RAD51-independent process. RAD51-dependent BIR occurs efficiently in G(2)-arrested cells. Once repair is initiated, the rate of repair replication during BIR is comparable to that of normal DNA replication, as copying of >100 kb is completed less than 30 min after repair DNA synthesis is detected close to the DSB.  相似文献   

11.
Gradzka I  Iwaneńko T 《DNA Repair》2005,4(10):1129-1139
A PFGE method was adapted to measure DNA double-strand breaks (DSBs) in mammalian cells after low (0-25 Gy) doses of ionising radiation. Instead of radionuclide incorporation, DNA staining in the gel by SYBR-Gold was used, which lowered the background of DNA damage and could be applied to non-cycling cells. DSB level was defined as a product of a fraction of DNA released to the gel (FR) and a number of DNA fragments in the gel (DNA(fragm)) and expressed as a percentage above control value. The slope of the dose-response curve was two-fold higher compared to that with FR alone as DSB level indicator (31.4 versus 15.6% per Gy). Two alternative ways were proposed to determine the total amount of DNA, used for FR calculation: measurement of DNA content in a plug not subjected to electrophoresis, with the use of Pico-Green, or estimation of DNA released to the gel from a plug irradiated with 600 Gy of gamma-rays. The limit of DSB detection was 0.25 Gy for human G1-lymphocytes and 0.5-1 Gy for asynchronous cultures of human glioma M059 K and J or mouse lymphoma L5178Y-R and -S cells. Specificity of our PFGE assay to DSB was confirmed by the fact that no damage was detected after treatment of the cells with H(2)O(2), an inducer of single-strand DNA breaks (SSBs). On the contrary, the H(2)O(2) inflicted damage was detected by neutral comet assay, attaining 160% above control (equivalent to 2.5 Gy of X-radiation). DSB rejoining, measured in cells after X-irradiation with a dose of 10 Gy, generally proceeded faster than that measured previously after higher (30-50 Gy) doses of ionising radiation. Clearly seen were defects in DSB rejoining in radiosensitive M059 J and L5178Y-S cells compared to their radioresistant counterparts, M059 K and L5178Y-R. In some cell lines, a secondary post-irradiation increase in DSB levels was observed. The possibility is considered that these additional DSBs may accumulate during processing of non-DSB clustered DNA damage or/and represent early apoptotic events.  相似文献   

12.
During B cell activation, the DNA lesions that initiate somatic hypermutation and class switch recombination are introduced by activation-induced cytidine deaminase (AID). AID is a highly mutagenic protein that is maintained in the cytoplasm at steady state, however AID is shuttled across the nuclear membrane and the protein transiently present in the nucleus appears sufficient for targeted alteration of immunoglobulin loci. AID has been implicated in epigenetic reprogramming in primordial germ cells and cell fusions and in induced pluripotent stem cells (iPS cells), however AID expression in non-B cells is very low. We hypothesised that epigenetic reprogramming would require a pathway that instigates prolonged nuclear residence of AID. Here we show that AID is completely re-localised to the nucleus during drug withdrawal following etoposide treatment, in the period in which double strand breaks (DSBs) are repaired. Re-localisation occurs 2-6 hours after etoposide treatment, and AID remains in the nucleus for 10 or more hours, during which time cells remain live and motile. Re-localisation is cell-cycle dependent and is only observed in G2. Analysis of DSB dynamics shows that AID is re-localised in response to etoposide treatment, however re-localisation occurs substantially after DSB formation and the levels of re-localisation do not correlate with γH2AX levels. We conclude that DSB formation initiates a slow-acting pathway which allows stable long-term nuclear localisation of AID, and that such a pathway may enable AID-induced DNA demethylation during epigenetic reprogramming.  相似文献   

13.
Double-strand breaks (DSBs) can lead to the loss of genetic information and cell death. Although DSB repair via homologous recombination has been well characterized, the spatial organization of this process inside cells remains poorly understood, and the mechanisms used for chromosome resegregation after repair are unclear. In this paper, we introduced site-specific DSBs in Caulobacter crescentus and then used time-lapse microscopy to visualize the ensuing chromosome dynamics. Damaged loci rapidly mobilized after a DSB, pairing with their homologous partner to enable repair, before being resegregated to their original cellular locations, independent of DNA replication. Origin-proximal regions were resegregated by the ParABS system with the ParA structure needed for resegregation assembling dynamically in response to the DSB-induced movement of an origin-associated ParB away from one cell pole. Origin-distal regions were resegregated in a ParABS-independent manner and instead likely rely on a physical, spring-like force to segregate repaired loci. Collectively, our results provide a mechanistic basis for the resegregation of chromosomes after a DSB.  相似文献   

14.
L I Lebedeva 《Genetika》1982,18(9):1468-1475
The report is concerned with one of possible mechanisms of emergence of chromosome aberrations after UV-irradiation of mammalian cells. The process is initiated by DNA cross-links following thymine dimerization, and is completed during mitosis. A model to account for formation of chromosome aberrations has been offered. It is compatible with the modern concept of a scaffolding model for metaphase chromosome structure in which the scaffold organizes DNA into loops along its length. The model predicts the importance of a process of mitotic chromosome isolation during aberration formation (in addition to the processes of DNA replication, reparation and chromosome association). Another feature of the model is an attempt to describe formation of aberrations under conditions of true DNA reparation.  相似文献   

15.
A survey is given of continuous-time Markov chain models for ionizing radiation damage to the genome of mammalian cells. In such models, immediate damage induced by the radiation is regarded as a batch-Poisson arrival process of DNA double-strand breaks (DSBs). Enzymatic modification of the immediate damage is modeled as a Markov process similar to those described by the master equation of stochastic chemical kinetics. An illustrative example is the restitution/complete-exchange model. The model postulates that, after being induced by radiation, DSBs subsequently either undergo enzymatically mediated restitution (repair) or participate pairwise in chromosome exchanges. Some of the exchanges make irremediable lesions such as dicentric chromosome aberrations. One may have rapid irradiation followed by enzymatic DSB processing or have prolonged irradiation with both DSB arrival and enzymatic DSB processing continuing throughout the irradiation period. Methods for analyzing the Markov chains include using an approximate model for expected values, the discrete-time Markov chain embedded at transitions, partial differential equations for generating functions, normal perturbation theory, singular perturbation theory with scaling, numerical computations, and certain matrix methods that combine Perron-Frobenius theory with variational estimates. Applications to experimental results on expected values, variances, and statistical distributions of DNA lesions are briefly outlined. Continuous-time Markov chains are the most systematic of those radiation damage models that treat DSB-DSB interactions within the cell nucleus as homogeneous (e.g., ignore diffusion limitations). They contain virtually all other relevant homogeneous models and semiempirical summaries as special cases, limiting cases, or approximations. However, the Markov models do not seem to be well suited for studying spatial dependence of DSB interactions, which is known to be important in some situations.  相似文献   

16.
DNA double-strand breaks (DSBs) are mainly repaired by c-NHEJ and HR pathways. The enhanced DSB mobility after DNA damage is critical for efficient DSB repair. Although microtubule dynamics have been shown to regulate DSB mobility, the reverse effect of DSBs to microtubule dynamics remains elusive. Here, we uncovered a novel DSB-induced microtubule dynamics stress response (DMSR), which promotes DSB mobility and facilitates c-NHEJ repair. DMSR is accompanied by interphase centrosome maturation, which occurs in a DNA-PK-AKT–dependent manner. Depletion of PCM proteins attenuates DMSR and the mobility of DSBs, resulting in delayed c-NHEJ. Remarkably, DMSR occurs only in G1 or G0 cells and lasts around 6 h. Both inhibition of DNA-PK and depletion of 53BP1 abolish DMSR. Taken together, our study reveals a positive DNA repair mechanism in G1 or G0 cells in which DSBs actively promote microtubule dynamics and facilitate the c-NHEJ process.  相似文献   

17.
Unrepaired DNA double-strand breaks (DSBs) typically result in G(2) arrest. Cell cycle progression can resume following repair of the DSBs or through adaptation to the checkpoint, even if the damage remains unrepaired. We developed a screen for factors in the yeast Saccharomyces cerevisiae that affect checkpoint control and/or viability in response to a single, unrepairable DSB that is induced by HO endonuclease in a dispensable yeast artificial chromosome containing human DNA. SIR2, -3, or -4 mutants exhibit a prolonged, RAD9-dependent G(2) arrest in response to the unrepairable DSB followed by a slow adaptation to the persistent break, leading to division and rearrest in the next G(2). There are a small number of additional cycles before permanent arrest as microcolonies. Thus, SIR genes, which repress silent mating type gene expression, are required for the adaptation and the prevention of indirect lethality resulting from an unrepairable DSB in nonessential DNA. Rapid adaptation to the G(2) checkpoint and high viability were restored in sir(-) strains containing additional deletions of the silent mating type loci HML and HMR, suggesting that genes under mating type control can reduce the toleration of a single DSB. However, coexpression of MATa1 and MATalpha2 in Sir(+) haploid cells did not lead to lethality from the HO-induced DSB, suggesting that toleration of an unrepaired DSB requires more than one Sir(+) function.  相似文献   

18.
Mammalian telomeres contain long tandem (TTAGGG)n repeats, which are protected by a complex of different proteins. Telomeric repeat-binding factors TRF1 and TRF2 play the key role in protection of telomeres through the formation of terminal loops (called T-loop). A T-loop isolates the 3' strand telomeric end and with this mechanism protects telomeres from the influence of enzymes of DNA reparation and telomere fusions and also interferes with the interaction of telomerase with telomeres. Many vertebrate species also contain large blocks of (TTAGGG)n sequences in pericentric and interstitial chromosome bands. The Chinese hamster genome contains a total of 18 arrays of these non-telomeric internal (TTAGGG)n sequences (ITs). Chromosome bands containing these arrays are unstable and should be protected with the help of another mechanism, rather than that using telomeres. In this study we analysed association of Green Fluorescent Protein (GFP)-tagged TRF1 in Chinese hamster V79 cells with ITs. We found that in these cells GFP-TRF1 associates with ITs in the interphase nucleus. We detected a little overlap between IT-associated GFP-TRF1 and random DSB sites visualized after the treatment of V79 cells with ionizing radiation. We found that the treatment of V79 cells with WM significantly increases the frequency of spontaneous chromosome aberrations. These WM effects are possible due to inhibiting phosphorylation of TRF1 by ATM. TRF1 is known to be eliminated from telomeres by overexpression of TANK1, which induces TRF1 poly(ADP-ribosyl)ation. We transfected V79 cells by plasmid encoding TANK1 and found that the frequency of chromosome rearrangements increased in these cells independently of their treatment by IR. Taken together, our results suggest that TRF1 may be involved in the sequence-specific protection of internal non-telomeric (TTAGGG)n repeats.  相似文献   

19.
DNA double-strand break (DSB) repair and checkpoint control represent distinct mechanisms to reduce chromosomal instability. Ataxia telangiectasia (A-T) cells have checkpoint arrest and DSB repair defects. We examine the efficiency and interplay of ATM's G2 checkpoint and repair functions. Artemis cells manifest a repair defect identical and epistatic to A-T but show proficient checkpoint responses. Only a few G2 cells enter mitosis within 4 h after irradiation with 1 Gy but manifest multiple chromosome breaks. Most checkpoint-proficient cells arrest at the G2/M checkpoint, with the length of arrest being dependent on the repair capacity. Strikingly, cells released from checkpoint arrest display one to two chromosome breaks. This represents a major contribution to chromosome breakage. The presence of chromosome breaks in cells released from checkpoint arrest suggests that release occurs before the completion of DSB repair. Strikingly, we show that checkpoint release occurs at a point when approximately three to four premature chromosome condensation breaks and approximately 20 gammaH2AX foci remain.  相似文献   

20.
The effect of BrdU incorporation on cell radiosensitivity as well as on the induction of DNA double-strand breaks (DSB) and chromosome damage by radiation was studied in CHO cells. Induction of DNA DSB was measured by the nonunwinding filter elution technique and damage at the chromosome level was visualized and scored in G1 cells using the technique of premature chromosome condensation. The results indicated an increase in the radiosensitivity of cells grown in the presence of BrdU. Although sensitization was observed both in cells irradiated in the exponential phase and in cells irradiated in the plateau phase of growth, the degree of sensitization was greater in exponentially growing cells for the same degree of thymidine replacement by BrdU in the DNA. It is hypothesized that this indicates the possible importance of chromatin structure at the time of irradiation and/or the importance of chromatin conformation changes after irradiation in the expression of radiation-induced potentially lethal damage in cells containing BrdU. Incorporation of BrdU affected both the slope and the width of the shoulder of the survival curve and increased the induction of DNA and chromosome damage per unit absorbed dose. The increase observed in the slope of the survival curve was quantitatively similar to the increase observed in damage induction at the DNA and the chromosome level, suggesting a cause-effect relationship between these phenomena. Reduction in the width of the shoulder did not correlate with the increase in the induction of DNA and chromosome damage, suggesting that different phenomena, probably related to enhanced fixation of radiation-induced potentially lethal damage in cells containing BrdU, underlie its modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号