首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
衰老进程受到多个基因以及信号通路的调节.哺乳动物雷帕霉素靶蛋白mTOR与核糖体S6K蛋白激酶不仅调节细胞的多种生理功能,在衰老进程中也发挥着重要作用.最近的实验表明,抑制mTORC1或S6K的活性可以延长小鼠的寿限.mTOR通路通过多种方式在衰老进程中发挥作用,包括细胞自噬、代谢副产物的积累以及影响组织干细胞的数量等等.而S6K在衰老进程中的作用并不十分清晰.目前mTOR和S6K已成为研究热点,通过对这两个分子在衰老进程中作用的研究,有望找到延长寿限的方法并揭示其中的机理,本文对此作一综述.  相似文献   

2.
Mitochondria play a key role in ageing. The pursuit of genes that regulate variation in life span and ageing have shown that several nuclear‐encoded mitochondrial genes are important. However, the role of mitochondrial encoded genes (mtDNA) is more controversial and our appreciation of the role of mtDNA for the evolution of life span is limited. We use replicated lines of seed beetles that have been artificially selected for long or short life for >190 generations, now showing dramatic phenotypic differences, to test for a possible role of mtDNA in the divergent evolution of ageing and life span. We show that these divergent selection regimes led to the evolution of significantly different mtDNA haplotype frequencies. Selection for a long life and late reproduction generated positive selection for one specific haplotype, which was fixed in most such lines. In contrast, selection for reproduction early in life led to both positive selection as well as negative frequency‐dependent selection on two different haplotypes, which were both present in all such lines. Our findings suggest that the evolution of life span was in part mediated by mtDNA, providing support for the emerging general tenet that adaptive evolution of life‐history syndromes may involve mtDNA.  相似文献   

3.
Recently, we and others have shown that genetic and environmental changes that increase the load of yeast cells with reactive oxygen species (ROS) lead to a shortening of the life span of yeast mother cells. Deletions of yeast genes coding for the superoxide dismutases or the catalases, as well as changes in atmospheric oxygen concentration, considerably shortened the life span. The presence of the physiological antioxidant glutathione, on the other hand, increased the life span of yeast cells. Taken together, these results pointed to a role for oxygen in the yeast ageing process. Here, we show by staining with dihydrorhodamine that old yeast mother cells isolated by elutriation, but not young cells, contain ROS that are localized in the mitochondria. A relatively large proportion of the old mother cells shows phenotypic markers of yeast apoptosis, i.e. TUNEL (TdT-mediated dUTP nick end labelling) and annexin V staining. Although it has been shown previously that apoptosis in yeast can be induced by a cdc48 allele, by expressing pro-apoptotic human cDNAs or by stressing the cells with hydrogen peroxide, we are now showing a physiological role for apoptosis in unstressed but aged wild-type yeast mother cells.  相似文献   

4.
Ageing of biological systems is accompanied by alterations in mitochondrial morphology, including a transformation from networks and filaments to punctuate units. The significance of these alterations with regard to ageing is not known. Here, we demonstrate that the dynamin-related protein 1 (Dnm1p), a mitochondrial fission protein conserved from yeast to humans, affects ageing in the two model systems we studied, Podospora anserina and Saccharomyces cerevisiae. Deletion of the Dnm1 gene delays the transformation of filamentous to punctuate mitochondria and retards ageing without impairing fitness and fertility typically observed in long-lived mutants. Our data further suggest that reduced mitochondrial fission extends life span by increasing cellular resistance to the induction of apoptosis and links mitochondrial dynamics, apoptosis and life-span control.  相似文献   

5.
Ageing is a challenge for any living organism and human longevity is a complex phenotype. With increasing life expectancy, maintaining long-term health, functionality and well-being during ageing has become an essential goal. To increase our understanding of how ageing works, it may be advantageous to analyze the phenotype of centenarians, perhaps one of the best examples of successful ageing. Healthy ageing involves the interaction between genes, the environment, and lifestyle factors, particularly diet. Besides evaluating specific gene-environment interactions in relation to exceptional longevity, it is important to focus attention on modifiable lifestyle factors such as diet and nutrition to achieve extension of health span. Furthermore, a better understanding of human longevity may assist in the design of strategies to extend the duration of optimal human health. In this article we briefly discuss relevant topics on ageing and longevity with particular focus on dietary patterns of centenarians and nutrient-sensing pathways that have a pivotal role in the regulation of life span. Finally, we also discuss the potential role of Nrf2 system in the pro-ageing signaling emphasizing its phytohormetic activation.  相似文献   

6.
The filamentous ascomycete Podospora anserina has been extensively studied as an experimental ageing model for more than 50 years. As a result, a huge body of data has been accumulated and various molecular pathways have been identified as part of a molecular network involved in the control of ageing and life span. The aim of this review is to summarize data on P. anserina ageing, including aspects like respiration, cellular copper homeostasis, mitochondrial DNA (mtDNA) stability/instability, mitochondrial dynamics, apoptosis, translation efficiency and pathways directed against oxidative stress. It becomes clear that manipulation of several of these pathways bears the potential to extend the healthy period of time, the health span, within the life time of the fungus. Here we put special attention on recent work aimed to identify and characterize this type of long-lived P. anserina mutants. The study of the molecular pathways which are modified in these mutants can be expected to provide important clues for the elucidation of the mechanistic basis of this type of 'healthy ageing' at the organism level.  相似文献   

7.
Understanding why and how senescence evolved is of great importance in investigating the multiple, complex mechanisms that influence the course of ageing in humans and other organisms. Compelling arguments eliminate the idea that death is generally programmed by genes for ageing, but there is still a widespread tendency to interpret data in terms of loosely defined 'age regulation', which does not usually make either evolutionary or mechanistic sense. This review critically addresses the role of natural selection in shaping ageing within the life history and examines the implications for research on genetic pathways that influence the life span. It is recognised that in exceptional circumstances the possibility exists for selection to favour limiting survival. In acknowledging that, at least in theory, ageing might occasionally be adaptive, however, the high barriers to validating actual instances of adaptive ageing are made clear.  相似文献   

8.
The number of centenarians is growing worldwide. This specific cohort has aroused the attention of scientists worldwide and is considered one of the most valuable models to study the mechanisms involved in the aging process. In fact, they have reached the extreme limits of human life span and, most important of all, they show relatively good health being able to perform their routine daily life. Because they have escaped the common lethal diseases, the role of their genetic background has been brought into focus. In fact, sequence variations, in a variety of pro- or anti-inflammatory cytokine genes, have been found to influence successful ageing and longevity. The key role played by cytokines has been also confirmed in centenarians as we know that inflammation has been related to several pathological burdens (e.g., obesity, atherosclerosis, and diabetes). Successful ageing seems to be related to an optimal functioning of the immune system, pointing out that polymorphisms for the immune system genes, which are involved in the regulation of immune-inflammatory responses, may play a key role in the genetics of ageing. This review provides an update in the field of ageing related to inflammation and genetics.  相似文献   

9.
In recent years, an impact of the p53 tumor suppressor protein in the processes of cellular and organismal ageing became evident. First hints were found in model organisms like Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster where a clear connection between ageing phenotypes and pathways that are regulated by p53, were found. Interestingly, pathways that are central to the ageing process are usually also involved in energy metabolism and are highly conserved throughout evolution. This also supports the long known empiric finding that caloric restriction has a positive impact on the life span of a wide variety of organisms. Within the last years, on the molecular level, an involvement of the insulin-like growth factor and of the histone deacetylase SRIT1 could be shown. Insight on the impact of p53 on ageing at the organismal level came from mice expressing aberrant forms of the p53 protein. Obviously, the balance of the full length p53 protein and of the shorter p44/DeltaNp53 isomer bear a strong impact on ageing. The shorter isoform regulates full length p53 and in cases where there is too much of the longer isoform, this leads to elevated apoptosis resulting in decreased tumor incidence but also in premature ageing due to exhaustion of the renewal potential. Therefore, modulating the expression of the truncated p53 isoform accordingly, might lead to increased health-span and elevated life-span.  相似文献   

10.
Commonly held views assume that ageing, or senescence, represents an inevitable, passive, and random decline in function that is strongly linked to chronological age. In recent years, genetic intervention of life span regulating pathways, for example, in Drosophila as well as case studies in non-classical animal models, have provided compelling evidence to challenge these views.Rather than comprehensively revisiting studies on the established genetic model systems of ageing, we here focus on an alternative model organism with a wild type (unselected genotype) characterized by a unique diversity in longevity - the honey bee.Honey bee (Apis mellifera) life span varies from a few weeks to more than 2 years. This plasticity is largely controlled by environmental factors. Thereby, although individuals are closely related genetically, distinct life histories can emerge as a function of social environmental change.Another remarkable feature of the honey bee is the occurrence of reverted behavioural ontogeny in the worker (female helper) caste. This behavioural peculiarity is associated with alterations in somatic maintenance functions that are indicative of reverted senescence. Thus, although intraspecific variation in organismal life span is not uncommon, the honey bee holds great promise for gaining insights into regulatory pathways that can shape the time-course of ageing by delaying, halting or even reversing processes of senescence. These aspects provide the setting of our review.We will highlight comparative findings from Drosophila melanogaster and Caenorhabditis elegans in particular, and focus on knowledge spanning from molecular- to behavioural-senescence to elucidate how the honey bee can contribute to novel insights into regulatory mechanisms that underlie plasticity and robustness or irreversibility in ageing.  相似文献   

11.
It is known that increased mortality due to environmental hazards results, in the course of natural selection, in the shortening of maximum life span and acceleration of sexual maturation in a population subjected to an intensified pressure from external environment. As a consequence, the prereproductive period/maximum life span ratio appears to be approximately the same in each species. Mechanisms responsible for this are not clear yet. Since maximum life span is limited by both ageing and formation of certain diseases (in humans, the so-called main noninfectious diseases), the paper discusses four possible models of development of ageing and age-linked disease--ecological, genetic, degenerative (metabolic) and ontogenetic. It was found that it is the ontogenetic model only that can adequately account for the development of moderate shifts in the duration of both sexual maturation and maximum life span. It also provides the rationale for the pleotropic activity of genes during the development of the organism, its ageing and formation of age-connected diseases.  相似文献   

12.
Non-homologous end joining (NHEJ) is the principal repair mechanism used by mammalian cells to cope with double-strand breaks (DSBs) that continually occur in the genome. One of the key components of the mammalian NHEJ machinery is the DNA-PK complex, formed by the Ku86/70 heterodimer and the DNA-PK catalytic subunit (DNA-PKcs). Here, we report on the detailed life-long follow-up of DNA-PKcs-defective mice. Apart from defining a role of DNA-PKcs in telomere length maintenance in the context of the ageing organism, we observed that DNA-PKcs-defective mice had a shorter life span and showed an earlier onset of ageing-related pathologies than the corresponding wild-type littermates. In addition, DNA-PKcs ablation was associated with a markedly higher incidence of T lymphomas and infections. In conclusion, these data link the dual role of DNA-PKcs in DNA repair and telomere length maintenance to organismal ageing and cancer.  相似文献   

13.
There are two different views on the evolution of life forms in Cormophyta: from woody plants to herbaceous ones or in opposite direction - from herbs to trees. In accordance with these views it is supposed that life span in plants changed in the course of evolution from many years (perennials) to few years (annuals, biennials), or went in reverse - from few years to many years. The author discusses the problems of senescence and longevity in Cormophyta in the context of various hypotheses of ageing (programmed death theory, mutation accumulation, antagonistic pleiotropy, disposable soma, genes of ageing, genes of longevity). Special attention is given to bio-morphological aspects of longevity and cases of non-ageing plants ("negative senescence", "potential immortality"). It is proposed to distinguish seven models of simple ontogenesis in Cormophyta that can exemplify the diversity of mechanisms of ageing and longevity. The evolution of life span in plants is considered as an indirect result of natural selection of other characteristics of organisms or as a consequence of fixation of modifications (episelectional evolution). It seems that short life span could emerge several times during evolution of one group of plants, thus favoring its adaptive radiation.  相似文献   

14.
15.
Carbofuran is a carbamate pesticide, widely used in agricultural practices to increase crop productivity. In mammals, carbofuran is known to cause several untoward effects, such as apoptosis in the hippocampal neuron, oxidative stress, loss of memory and chromosomal anomalies. Most of these effects are implicated with cellular senescence. Therefore, the present study aimed to determine the effect of carbofuran on cellular senescence and biological ageing. Spinster homolog 1 (Spns1) is a transmembrane transporter, regulates autolysosomal biogenesis and plays a role in cellular senescence and survival. Using senescence-associated β-galactosidase staining, we found that carbofuran accelerates the cellular senescence in spns1 mutant zebrafish. The yolk opaqueness, a premature ageing phenotype in zebrafish embryos, was accelerated by carbofuran treatment. In the survival study, carbofuran shortened the life span of spns1 mutant zebrafish. Autophagy is the cellular lysosomal degradation, usually up-regulated in the senescent cells. To know the impact of carbofuran exposure on autophagy progress, we established a double-transgenic zebrafish line, harbouring EGFP-tagged LC3-II and mCherry-tagged Lamp1 on spns1 mutant background, whereas we found, carbofuran exposure synergistically accelerates autolysosome formation with insufficient lysosome-mediated degradation. Our data collectively suggest that carbofuran exposure synergistically accelerates the cellular senescence and affects biological ageing in spns1 defective animals.  相似文献   

16.
The Free Radical Theory of Ageing (FRTA) predicts that oxidative stress, induced when levels of reactive oxygen species exceed the capacity of antioxidant defenses, causes ageing. Recently, it has also been argued that oxidative damage may mediate important life‐history trade‐offs. Here, we use inbred lines of the decorated cricket, Gryllodes sigillatus, to estimate the genetic (co)variance between age‐dependent reproductive effort, life span, ageing, oxidative damage, and total antioxidant capacity within and between the sexes. The FRTA predicts that oxidative damage should accumulate with age and negatively correlate with life span. We find that protein oxidation is greater in the shorter lived sex (females) and negatively genetically correlated with life span in both sexes. However, oxidative damage did not accumulate with age in either sex. Previously we have shown antagonistic pleiotropy between the genes for early‐life reproductive effort and ageing rate in both sexes, although this was stronger in females. In females, we find that elevated fecundity early in life is associated with greater protein oxidation later in life, which is in turn positively correlated with the rate of ageing. Our results provide mixed support for the FRTA but suggest that oxidative stress may mediate sex‐specific life‐history strategies in G. sigillatus.  相似文献   

17.
In this paper the method of life span extension of multicellular organisms (human) using reservation of stem cells followed by autotransplantation has been proposed. As the efficiency of this method results from the information theory of ageing, it is important to verify it experimentally testing the basic concepts of the theory. Taking it into consideration, the experiment on bone marrow transplantation to old mice from young closely related donors of the inbred line was carried out. It has been shown that transplanted animals exhibited a survival advantage, a mean life span increased by 34% as compared to the control. This result not only demonstrates the efficiency of the proposed method for life span extension of multicellular organisms, but also confirms the basis of the information theory of ageing.  相似文献   

18.
Morphochemical age-related features in the hermaphrodite Caenorhabditis elegans are reported. The study of worms of different ages shows a gradual decline in response to the various histochemical reactions and a disorganization of the components of the gonad during ageing. Using an immunocytochemical procedure, we show for the first time the presence of immunoreactive IL-1alpha and PDGF-AB molecules in neurons from young adult C. elegans. Moreover, TNF-alpha- and PDGF-AB-like molecules are also present in the secretory cells of the pharyngeal terminal bulb. The number of positive cells to anti-cytokine and anti-growth factor antibodies decreases in older worms, suggesting that these molecules may play an important role in worm ageing. The present investigation therefore supports the findings in the literature obtained with different approaches on the crucial role of the nervous and reproductive systems in the life span of C. elegans.  相似文献   

19.
A number of theories have attempted to account for ageing processes in various species. Following the < rate of living > theory of Pearl, Harman suggested fifty years ago that the accumulation of oxidants could explain the alteration of physical and cognitive functions with ageing. Oxygen metabolism leads to reactive species, including free radicals, which tend to oxidize surrounding molecules such as DNA, proteins and lipids. As a consequence various functions of cells and tissues can be altered, leading to DNA instability, protein denaturation and accumulation of lipid byproducts. Oxidative stress is an adaptive process which is triggered upon oxidant accumulation and which comprises the induction of protective and survival functions. Experimental evidence suggests that the ageing organism is in a state of oxidative stress, which supports the free radical theory. A number of other theories have been proposed ; some of these are actually compatible with the free radical theory. Caloric restriction is among the best models to increase life span in many species. While the relationship between caloric restriction and corrected metabolic rate is controversial, the decrease in ROS production by mitochondria appears to be experimentally supported. The ROS and mitochondrial theories of ageing appear to be compatible. Genetic models of increased life span, particularly those affecting the Foxo pathway, are usually accompanied by an increased resistance to oxidative insult. The free radical theory is not consistent with programmed senescence theories involving the cell division dependent decrease in telomere length ; however, oxidants are known to alter telomere structure. An appealing view of the role of oxidative stress in ageing is the trade-off principle which states that a phenotypic trait can be evolutionarily conserved because of its positive effects on development, growth or fertility, and despite its negative effect on somatic functions and ageing. It is likely that most cellular stresses which comprise adaptive and toxic functions follow such a rule.  相似文献   

20.
Melatonin, the chief hormone of the pineal gland, is produced and secreted into the blood in a circadian manner with maximal production always occurring during the dark phase of the light:dark cycle. Whereas the 24h rhythm of melatonin production is very robust in young animals including humans, the cycle deteriorates during ageing. The rhythm of melatonin can be substantially preserved during ageing by restricting the food intake of experimental animals; this same treatment increases the life span of the animals. The exogenous administration of melatonin to non-food restricted animals also reportedly increases their survival. Moreover, melatonin has been shown to have immunoenhancing effects and oncostatic properties. The implication of these studies is that melatonin may have both direct and indirect beneficial effects in delaying ageing processes or it may retard the development of processes (e.g., immunodeficiency and tumor growth) which contribute to a reduced life span.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号