首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper summarizes the results of studies of 85 individuals exposed in the Southern Ural region. The spontaneous frequency of the cells with micronuclei (MN) in a population of human blood lymphocytes after PHA stimulation and cytokinetic block with cytochalasin B has been determined. The sensitivity of lymphocytes to the irradiation at the dose of 1.0 Gy and the adaptive response (AR) after the irradiation at the low adaptive dose of 0.05 Gy, and the challenge dose of 1.0 Gy 5 h later have been studied too. It was shown that the peculiarity of the Urals population consists in a higher individual variability of the frequency of cells with MN in all groups have been investigated (spontaneous, after acute irradiation in the dose 1.0 Gy) in comparison with Moscow people. The proportion of persons with a significant AR in the Urals groups was considerably lower than that identified among Moscow residents, and the number of persons with enhanced radiosensitivity increased following low-dose irradiation. We can suppose that prolonged action of low level radiation with another ecological factors, living in the contaminated regions result in the enhancement of the sensitivity to the genotoxic agents in the separate individuals.  相似文献   

2.
In this paper the results of the Chernobyl accident investigation 5-10 and 24 years after are summarized. The genomic instability, adaptive response formation, genome damage and oxidative status have been investigated. The studies were performed on cells in culture, mice, children and adults living in contaminated areas and liquidators. On cells in culture after exposition in the accident zone and culturing thereafter in laboratory conditions the cell proliferative activity decrease; the late cell death, the frequency of cells with micronuclei and giant cells increasing have been observed. In the progeny of exposed cells the enhancement of radiosensitivity has been noticed. So we can suppose that in cultured cells exposition in the zone of the accident the genomic instability is induced which results in many disturbances. At the organism level in mice exposed in the Chernobyl zone the radiosensitivity increase and the decrease of endotheliocytes density in brain tissue has been observed. On the stimulated by PHA blood lymphocytes of children the increase of the frequency of cells with micronuclei more than 2 time have been noticed. In all groups investigated, the decrease of individuals with significant adaptive response was observed. In children and adults inhabitants the increase of radiosensitivity after low dose of irradiation has been noticed. 24-year after the accident it was discovered that in liquidators lymphocytes the frequency of cells with micronuclei, with chromosome type aberrations, with DNA double strand breaks have been increased; the reactive oxygen species (ROS) were decreased in comparison with the control population. We can suppose that genomic instability induced in residents of contaminated regions and liquidators long after the accident results in the genetic apparatus damage, radiosensitivity enhancement, hypoxia that represent risk factors and increase the probability of tumour and non-tumour diseases. The development of these pathological processes may happen in much more remote periods.  相似文献   

3.
The spontaneous level of blood lymphocytes with micronuclei (MN), the sensitivity to 1.0 Gy irradiation and adaptive response (AR) after adaptive irradiation with a dose of 0.05 Gy 5 hr later have been studied in children population living in different districts of Moscow. It was shown that spontaneous frequency of cells with MN, the sensitivity to 1.0 Gy acute irradiation and the AR manifestation have significant differences in samples taken from children living in different districts. The individual variability is significant also. In each group of children the individuals with the enhanced radiosensitivity after adaptive irradiation have been observed. In conformance with the data of radioecological inspection the radiation situation in different Moscow districts is quite safe on overage but in some districts the spontaneous level of lymphocytes with MN, and radiosensitivity after 0.05 Gy irradiation were enhanced, the AR was not found.  相似文献   

4.
The frequency of cells with chromosome aberrations and the number of aberrations per cell have been studied by metaphase analysis in the nonirradiated progeny of irradiated human blood lymphocytes. DNA fragmentation (DNA double-stranded breaks) has been investigated by DNA comet assay. To study the adaptive response (AR), PHA-stimulated lymphocytes were irradiated by the adaptive dose (0.05 Gy) in 24 h and by challenge dose (1 Gy) in 48 h after stimulation. The first through fourth mitoses were identified by 5-bromodeoxyuridine. It was found that the frequency of chromosome aberrations and double-strand breaks were increased in all mitotic cycles after the challenge irradiation. In most individuals, the adaptive response is induced by adaptive and challenge irradiations in the first and the second mitotic cycles (48 and 72 h after stimulation, respectively); however, it is absent in the third and the fourth mitoses. In the first mitosis (1Gy in 48 h after stimulation), only chromatid aberrations are observed; chromosome aberrations were registered in subsequent mitoses. DNA comet assay showed that the adaptive response was obvious at 48–72 h, but not 96 h, after stimulation. It can be concluded that the nonirradiated progeny of irradiated lymphocytes have genomic instability. The adaptive response is manifested up to the third mitosis and is explained by the decreasing number of chromatid and chromosome aberrations and DNA fragmentation. We suppose that double-stranded DNA breaks may be damage signals for the induction of adaptive response.  相似文献   

5.
In offspring's of first generation irradiated inhabitants of Techa river (fathers, mothers and both parents) the spontaneous level of damaged blood lymphocytes, sensitivity of lymphocytes to the additional acute irradiation in dose 1.0 Gy and radioinduced adaptive response after adaptive (5 cGy) and challenge (1.0 Gy) irradiation 5 h after was studied. The micronuclei test with cytochalasin B as a criteria of the effect have been used. It was shown, that descendents of irradiated parents differ from the control group. The main difference is the significant decrease of the adaptive response frequency in the progeny. In the offspring's of the irradiated fathers and mothers there is no one individuals with the adaptive response; in the offspring's of both irradiated parents the frequency of individuals with adaptive response decreases in control from 19.5% to 6.8%. The distribution of descendents according to response on adaptive irradiation differ significantly from the control distribution and from the each other. And the tendency to the radiosensitivity increase after adaptive irradiation was observed. In the whole joint group of progeny the mean spontaneous cell frequency with micronuclei decreased, but the sensitivity of lymphocytes to the additional acute irradiation doesn't differ from the control. The results of the paper permit to suppose that transgenerational genome instability in human can be determined. Earlier discovered decrease of the adaptive response frequency in the Techa river livings is observed in the offspring's of irradiated fathers, mothers and both parents.  相似文献   

6.
The genomic instability (GI) in somatic cells of the progeny (F1 generation) of male mice chronically exposed to low-dose gamma-radiation was studied by comparative analysis of chromosome damage. BALB/C male mice exposed to 0.1 Gy (0.01 Gy/day) and 0.5 Gy (0.01 and 0.05 Gy/day) were mated with unirradiated females 15 days after irradiation. For comparison of radiosensitivity, two-month-old males, the descendants of irradiated and unirradiated animals, were subjected to irradiation with a dose of 1.5 Gy (0.47 Gy/min) from a 60Co source. GI was revealed by the standard scheme of adaptive response. The experiments indicated that, by using the test "adaptive response", it is possible to detect the transition of gamma-radiation-induced genomic instability in sex cells of male parent into somatic cells of mice (F1 generation) either from changes in radiosensitivity or by the absence of the adaptive response induced by a standard scheme.  相似文献   

7.
The results of long standing researches in the zones, which suffered from Chernobyl accident, on cultured cells, mice, blood lymphocytes of inhabitants of polluted regions (adults and children) are brought in the paper. The conclusion is that residence in polluted territories results in genomic instability, that is manifested in many effects on cytogenetic, cellular and organisms levels. It was shown, that in late descendants of cells after exposition in Chernobyl zone the increase of cell death, the micronuclei level, the frequency of giant cells, the enhancement of radiosensitivity and the absence of the adaptive response was observed. In the culture of embryonic fibroblasts, that was obtained from the exposed mice, the increase of cells with aberrations of chromosome and the frequency of multiaberrant cells was noticed. In mice exposed in Chernobyl zone the decrease of amounts of the endothelial cells in the different parts of the brain, the enhancement of mice radiosensitivity was observed. All effects were discovered in the late descendants of cells and can be the result of genomic instability induced by low level irradiation in polluted by Chernobyl accident regions.  相似文献   

8.
Using lymphocytes of 5 healthy individuals the ability to adaptive response (AR), cell composition of population after PHA stimulation, changes in cell composition population after irradiation in the dose of 1.0 Gy and after irradiation in adaptive (0.05 Gy) and challenge (1.0 Gy) doses have been studied. AR observed in 2 of the 5 individuals only. After PHA stimulation the persons with AR have the total amount of cells after mitosis or during mitosis (the number of binucleated cells + the number of multinucleated cells + the whole cells with micronuclei + the number of mitotic cells) on average is higher than in persons without AR. In individuals with AR the linear correlation between the number of binucleated cells with micronuclei (on the 1000 scored binucleated cells) and the part of binucleated cells in the population is observed with coefficients of correlation -0.89 and -0.91. In the humans without AR this correlation is absent. The correlation observed permits to suppose that AR may occur at the expense of not only the decrease in number of damaged lymphocytes, but also the increase in the share of not damaged binucleated cell with the stable number of damaged cells.  相似文献   

9.
The role of changes in cell composition of population of human blood lymphocytes in the forming of an adaptive response (AR) has been studied. By micronuclei assay and cytokinetic block with cytohalasin B the frequency of mono-, bi- and multinuclear cells with micronuclei (MN) and without MN were determined in the initial population. The same parameters have been studied after exposure of the population to the adaptive (0.05 Gy), challenge (1.0 Gy) doses and to doses 0.05 + 1.0 Gy 5 hours after. 13 from 23 investigated individuals manifested the AR: the decreasing of the ratio of damaged binuclear cells to the all binuclear cells after the adaptive and challenge exposure. It was shown that the ways of an AR forming are different: in 7 of 13 individuals with AR the number of binuclear cells with MN did not decrease but the amount of binuclear undamaged cells increased. The ratio of these parameters enhances but not for the account of cells with MN decreasing. There is the linear correlation between the frequency of cells with MN and the frequency of binuclear cells in population (spontaneous, after irradiation with doses of 0.05, 1.0 and 0.05 + 1.0 Gy) with the coefficient of correlation about -1. These results show the presence of new mechanism of AR forming, which is not connect with the induction of damage repair and rather with the stimulation of cell division. In the another group of individuals the decrease in damaged cells number after irradiation with doses of 0.05 + 1.0 Gy have been observed. Probably the stimulation of repair system occurred to the moment of 1.0 Gy irradiation. Thus, the mechanism of an AR forming depends on the individual properties of organism. The work was suppoted by RFBR grant 03-04-48325a.  相似文献   

10.
Melanin’s influence on the chromosome aberration frequency induced by radiation in human lymphocytes and mouse bone marrow cells has been studied. We revealed earlier that melanin significantly decreases the frequencies of different radiation-induced mutations in animal germ cells. Melanin protection in somatic cells has been found to be less effective. The melanin effect in somatic cells depends on radiation dose: the lower the damage level, the better the melanin protection. In order to determine the influence of melanin at low radiation doses, the adaptive response was investigated in mouse bone marrow cells in vivo. The level of chromosome aberrations in these cells after fractionated irradiation of 0.2 Gy+1.5 Gy with a 4-h interval was about half that after a single dose of 1.7 Gy. If melanin was injected prior to irradiation, the aberration level decreased by a factor of about two in both cases. This observed result may be due to the potential radioprotective effect of melanin and to the absence of any adaptive response, whereas in the case of melanin application between the priming and challenge doses, the combined effect of the adaptive response as well as melanin protection resulted in a 4-fold decrease of chromosome aberrations. These results allow us to draw the following conclusions: adaptive response can be prevented by a radioprotector such as melanin, and melanin is capable of completely removing low-dose radiation effects. Received: 2 December 1998 / Accepted in revised form: 15 September 1999  相似文献   

11.
低水平辐射诱导的细胞遗传学适应性反应   总被引:6,自引:0,他引:6  
蔡露  刘树铮 《遗传学报》1991,18(2):109-114
先用0.01GY x-射线(剂量率:0.01GY/分)体外照射人、兔外周血,经不同时间后再用1.5GY X-射线(0.44GY/分)照射,发现在G_0、G_1、S和G_2期受0.01GY X-射线照射后再给大剂量照射者,其染色体畸变率明显低于单纯受1.5GY X-射线照射组(P<0.01)。这一适应性反应能持续3个细胞周期,在接受小剂量照射后超过3个细胞周期再受大剂量照射者,染色体畸变率未见减少。若在第三细胞周期以后再次给予小剂量照射,可再次诱导适应性反应。用小鼠整体小剂量照射后骨髓细胞和生殖细胞亦出现这种适应性反应。另外也探讨了不同剂量和不同剂量率的预先照射对适应性反应的影响。  相似文献   

12.
To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.  相似文献   

13.
In previous studies we have shown that low doses of radiation from incorporated tritiated thymidine can make human lymphocytes less susceptible to the genetic damage manifested as chromatid breakage induced by a subsequent high dose of X rays. We have also shown that this adaptive response to ionizing radiation can be induced by very low doses of X rays (0.01 Gy; i.e., 1 rad) delivered during S phase of the cell cycle. To see if a low dose of X rays could induce this response in cells at other phases of the cell cycle, human lymphocytes were irradiated with 0.01 or 0.05 Gy before stimulation by phytohemagglutinin (G0) or with 0.01 Gy at various times after stimulation (G1), followed by 1.5 Gy (150 rad) at G2 phase. Although G0 lymphocytes failed to exhibit an adaptive response, G1 cells irradiated as early as 4 h after stimulation did show the response. Experiments were also carried out to determine how long the adaptive response induced by 0.01 Gy could persist. A 0.01-Gy dose was delivered to lymphocytes in the first S phase, followed by 1.5 Gy in the same or subsequent cell cycles. Lymphocytes receiving a 1.5-Gy dose at 40, 48, or 66 h after stimulation exhibited an adaptive response, whereas those receiving a 1.5-Gy dose at 90 or 114 h did not. Duplicate cultures containing bromodeoxyuridine showed that at 40 h all the lymphocytes were in their first cell cycle after stimulation, at 48 h half of the lymphocytes were in their first cell cycle and half in their second, and at 66 h 80% of the lymphocytes were in their third cell cycle. Thus the adaptive response persists for at least three cell cycles after it is induced by 0.01 Gy of X rays. In other experiments, the time necessary for maximal expression of the adaptive response was determined by delivering 0.01 Gy at hourly intervals 1-6 h before the 1.5-Gy dose. While a 4-h interval was enough for expression of the adaptive response, shorter intervals were not.  相似文献   

14.

In this paper the results of research at 5–10 and 24 years after the Chernobyl accident are summarized. These results include the investigation of genomic instability, formation of the adaptive response, genome damage, and oxidative status. The studies were performed on cells in culture, mice, children and adults who lived in the contaminated areas, and liquidators of the consequences of the Chernobyl accident. Inhibition of cell proliferative activity, late cell death, and the increase in micronucleus and giant cell frequency were observed after the exposure of cells in culture in the accident zone followed by their culturing in laboratory conditions. In the progeny of the exposed cells, the effect of enhanced radiosensitivity was detected. Thus, it can be assumed that exposure of parental cells in culture in the area of the accident induced genomic instability that resulted in the development of various abnormalities in progeny cells. At the organism level, the Chernobyl zone exposure of mice caused an increase in radiosensitivity; as well, a decrease in the endotheliocyte density in the cerebral cortex and other brain tissues was observed. In the blood lymphocytes of children stimulated by PHA, a more than two times increase in micronucleus cell frequency was detected. A reduced number of individuals with significant adaptive response was found in both the juvenile and adult groups. In all investigated populations, an increased number of individuals with enhanced radiosensitivity were observed in response to low-dose radiation exposure. At 24 years after the accident liquidators were subjected to examinations, which revealed an increased frequency of cells with micronuclei and chromosome-type aberrations in blood lymphocytes, an elevated level of DNA double strand breaks, and a reduced level of reactive oxygen species compared to those of the control group. This means that the genomic instability that was accumulated by the residents of the contaminated regions and liquidators as a result of the accident leads to damage of the genetic apparatus, an increase in radiosensitivity, and hypoxia as late consequences that all are risk factors and increase the probability of the development of tumor and non-tumor diseases. The development of the above-mentioned pathological processes may occur in the distant future.

  相似文献   

15.
The role of the WDR3 gene on genomic instability has been evaluated in a group of 115 differentiated thyroid cancer (DTC) patients. Genomic instability has been measured according to the response of peripheral blood lymphocytes to ionizing radiation (0.5 Gy). The response has been measured with the micronucleus (MN) test evaluating the frequency of binucleated cells with MN (BNMN), both before and after the irradiation. No differences between genotypes, for the BNMN frequencies previous the irradiation, were observed. Nevertheless significant decreases in DNA damage after irradiation were observed in individuals carrying the variant alleles for each of the three genotyped SNPs: rs3754127 [−8.85 (−15.01 to −2.70), P<0.01]; rs3765501 [−8.98 (−15.61 to −2.36), P<0.01]; rs4658973 [−8.70 (−14.94 to −2.46), P<0.01]. These values correspond to those obtained assuming a dominant model. This study shows for the first time that WDR3 can modulate genome stability.  相似文献   

16.
The cell composition of a population of human blood lymphocytes was studied after irradiation at doses of 5 cGy, 1.0 Gy and 5 cGy + 1.0 Gy and the use of a cytokinesis block. The frequencies of uni-, bi- and multinucleate lymphocytes with and without micronuclei (MN) were taken into account. By the standard criterion the frequency of binucleate lymphocytes with MN among binucleate lymphocytes--the donors were characterized as follows: in with reduction of radiosensitivity after irradiation with 5 cGy + 1.0 Gy as compared to the values of radiosensitivity after irradiation with 1.0 Gy only (an adaptive response, AR); in with no change of radiosensitivity after exposure to these doses (no AR); and with an increased ofradiosensitivity after exposure to these doses (syndrome of increased radiosensitivity, IRS). It was found that upon exposure to 1.0 Gy and 5 cGy + 1.0 Gy in some donors with AR, without AR and with IRS the total numbers of damaged cells in the population and the number of binucleate cells with MN were equal. This result calls in question the involvement of the repair mechanism in the alteration of radiosensitivity of lymphocytes in these donors. It was also observed that in the same donors a simultaneous increase (or a decrease in the case of IRS) of the portion of undamaged binucleate cells in the population took place. Our results demonstrate the existence of a new, populational, mechanism involved in the alteration of radiosensitivity after exposure to the adaptive and challenge doses.  相似文献   

17.
The effects of low doses of ionizing radiation have been a matter of important debate over the last few years. The point of discussion concerns the validity of the linear dose-response extrapolation for low doses, used by international organizations, to establish radio-protection norms. Here, we contributed to this discussion by investigating the induction of chromosome aberrations by low to moderate doses ranging from 0 to 10 Gy in root meristem cells of 6-day-old Pisum plantlets. After acute irradiation of plantlets by a (60)Co source, the percentage of root tip meristem cells displaying chromosome aberrations was estimated immediately after irradiation and after 20 h recovery time. The dose-effect curves show non-linear responses, especially in the low dose range (0- 1 Gy), which is of particular interest. After 20 h of recovery, a steep increase of aberrations was observed for cells exposed to 0.4 Gy, followed by a plateau for doses until 1 Gy. There was an irradiation effect on plant growth during the first and second generations, showing the persistence of cell division anomalies as a long term effect of acute irradiation. This result suggests the induction of a genomic instability.Our results, in agreement with some obtained in animals, show rather non-linear dose-effect responses, with notably higher biological effects of low doses than expected.  相似文献   

18.
Human peripheral blood lymphocytes from 10 male donors were exposed to mitomycin C with and without prior irradiation with 0.01 Gy X-rays. Acute or chronic irradiation of lymphocytes in G1 resulted in a decrease in the subsequent level of mitomycin C-induced sister-chromatid exchange aberrations. The effect was small (approximately 10%) with evidence of some variability between donors. By contrast no adaptive response was observed if the cells were treated in G0.  相似文献   

19.
The dependence between the adaptive response and adaptive dose was studied on the basis of cytogenetic damage in polychromatic erythrocytes of bone marrow cells in mice after a low dose gamma-irradiation in vivo. The adaptive response to doses of 0.1 and 0.2 Gy was found to be retained for at least two months after irradiation. However, the adaptive dose of 0.4 Gy did not induce prolonged adaptive response.  相似文献   

20.
The developing human embryo and fetus undergo very radiosensitive stages during the prenatal development. It is likely that the induction of low dose related effects such as bystander effects, the adaptive response, and genomic instability would have profound effects on embryonic and fetal development. In this paper, I review what has been reported on the induction of these three phenomena in exposed embryos and fetuses. All three phenomena have been shown to occur in murine embryonic or fetal cells and structures, although the induction of an adaptive response (and also likely the induction of bystander effects) are limited in terms of when during development they can be induced and the dose or dose-rate used to treat animals in utero. In contrast, genomic instability can be induced throughout development, and the effects of radiation exposure on genome instability can be observed for long times after irradiation including through pre- and postnatal development and into the next generation of mice. There are clearly strain-specific differences in the induction of these phenomena and all three can lead to long-term detrimental effects. This is true for the adaptive response as well. While induction of an adaptive response can make fetuses more resistant to some gross developmental defects induced by a subsequent high dose challenge with ionizing radiation, the long-term effects of this low dose exposure are detrimental. The negative effects of all three phenomena reflect the complexity of fetal development, a process where even small changes in the timing of gene expression or suppression can have dramatic effects on the pattern of biological events and the subsequent development of the mammalian organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号