共查询到20条相似文献,搜索用时 15 毫秒
1.
By virtue of their synthesis in the cytoplasm, proteins destined for import into peroxisomes are obliged to traverse the single membrane of this organelle. Because the targeting signal for most peroxisomal matrix proteins is a carboxy-terminal tripeptide sequence (SKL or its variants), these proteins must remain import competent until their translation is complete. We sought to determine whether stably folded proteins were substrates for peroxisomal import. Prefolded proteins stabilized with disulfide bonds and chemical cross-linkers were shown to be substrates for peroxisomal import, as were mature folded and disulfide-bonded IgG molecules containing the peroxisomal targeting signal. In addition, colloidal gold particles conjugated to proteins bearing the peroxisomal targeting signal were translocated into the peroxisomal matrix. These results support the concept that proteins may fold in the mammalian cytosol, before their import into the peroxisome, and that protein unfolding is not a prerequisite for peroxisomal import. 相似文献
2.
Saccharomyces cerevisiae is unable to grow on methanol because it lacks the enzymes required for its metabolism. To study the possibility of whether or not the methanol oxidation pathway of Hansenula polymorpha can be transferred to S. cerevisiae, the gene coding for alcohol oxidase, a peroxisomal homo-octameric flavoprotein, was introduced into S. cerevisiae. Transformed cells contain varying amounts of alcohol oxidase depending on the plasmid used. Immunocytochemical experiments indicate that the protein is imported into peroxisomes, whether organelle proliferation is induced or not. Cells lack alcohol oxidase activity however, and only the monomeric, non-functional, form of the protein is found. These findings indicate that the H. polymorpha peroxisomal targeting signal of alcohol oxidase is recognized in S. cerevisiae and protein monomers are imported. 相似文献
3.
4.
M Eilers K Verner S Hwang G Schatz 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1988,319(1193):121-126
A mounting body of evidence suggests that cytoplasmically synthesized proteins destined to be imported into the mitochondrial interior must at least partly unfold to penetrate across the mitochondrial membranes. During post-translational import, this unfolding process appears to be a major rate-limiting step. It can be blocked by ligands that stabilize the protein's native conformation and appears to be accompanied by the cleavage of ATP outside the mitochondrial inner membrane. 相似文献
5.
G L Chen A Balfe W Erwa G Hoefler J Gaertner J Aikawa W W Chen 《Biochemical and biophysical research communications》1991,178(3):1084-1091
A polypeptide containing the carboxyl-terminal fragment of human peroxisomal enoyl-CoA hydratase:3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme was synthesized in vitro from its cDNA clone. This expression polypeptide was transported into purified rat liver peroxisomes. When the expression polypeptide was incubated with postnuclear supernatant fractions of human hepatoma cells and analyzed by Nycodenz gradient SDS-PAGE and fluorography, it was imported specifically into peroxisomes as indicated by its resistance to proteinase K degradation. A deletion of the last nine amino acid residues at the carboxyl-terminus of this polypeptide prevents its peroxisomal import. A tripeptide sequence, SKL, located at the carboxyl-terminus of human bifunctional enzyme appears to be the targeting signal for the peroxisomal importation of bifunctional enzyme in human cells. 相似文献
6.
Faber KN van Dijk R Keizer-Gunnink I Koek A van der Klei IJ Veenhuis M 《Biochimica et biophysica acta》2002,1591(1-3):157-162
Previously, Waterham et al. [EMBO J. 12 (1993) 4785] reported that cytosolic oligomeric alcohol oxidase (AO) is not incorporated into peroxisomes after reassembly of the organelles in the temperature-sensitive peroxisome-deficient mutant pex1-6(ts) of Hansenula polymorpha shifted to permissive growth conditions. Here, we show that the failure to import assembled AO protein is not exemplary for other folded proteins because both an artificial peroxisomal matrix protein, PTS1-tagged GFP (GFP.SKL), and the endogenous dimeric PTS1 protein dihydroxyacetone synthase (DHAS) were imported under identical conditions. In vitro receptor-ligand binding studies using immobilised H. polymorpha Pex5p and crude extracts of methanol-induced pex1-6(ts) cells, showed that AO octamers did not interact with the recombinant PTS1 receptor, at conditions that allowed binding of folded GFP.SKL and dimeric DHAS. This shows that import of oligomeric proteins is not a universal pathway for peroxisomal matrix proteins. 相似文献
7.
Carrier proteins located in the inner membrane of mitochondria are responsible for the exchange of metabolites between the intermembrane space and the matrix of this organelle. All members of this family are nuclear-encoded and depend on translocation machineries for their import into mitochondria. Recently many new translocation components responsible for the import of carrier proteins were identified. It is now possible to describe a detailed import pathway for this class of proteins. This review highlights the contribution made by translocation components to the process of carrier protein import into mitochondria. 相似文献
8.
9.
Import of proteins into mitochondria and chloroplasts 总被引:2,自引:0,他引:2
Although mitochondria and chloroplasts synthesize some of their own proteins, they must import most of them from the cytosol. Import is mediated by molecular chaperones in the cytosol, receptors and channels in the organelle membranes and ATP-driven 'import motors' inside the organelles. Many of these components are now known, allowing informed guesses on how they might work. 相似文献
10.
Clas Dahlin 《Physiologia plantarum》1993,87(3):410-416
Young etioplasts with different carotenoid contents were assayed for their ability to import in vitro synthesized nuclear-encoded proteins. The plastids were isolated from the basal 1. 5cm of dark-grown wheat seedlings developed from seeds imbibed with 4 different concentrations of Norflurazon. an inhibitor of the carotenoid biosynthesis. Plastids isolated from plants treated with the two highest concentrations. 2. 8 and 28 mg l−1 , of Norflurazon contained approximately 10 and 5% of the carotenoid contents, respectively, compared to the control. The total amounts of proteins in these plastids were approximately 68 and 60% compared to control plastids. Translocation assays employing the precursors of the small subunit of ribulose 1. 5-bisphosphate carboxylase/oxygenase (pSS), and the non-Photosynthetic heat-shock protein 21 (pHSP21), showed that the rate of protein import was considerably lower in plastids with low carotenoid contents. The amounts of imported, processed SS were 11 and 10% after 2. 8 and 28 mg 1−1 , respectively, compared to the control, whereas the amounts of HSP21 at these herbicide concentrations were 20 and 18%, respectively. The low apparent import in plastids of Norflurazon-treated leaves was not an effect of intraorganellar degradation of imported proteins, nor were there any differences in the amounts of processed, protease-protected protein when Norflurazon was added to the import reaction using control plastids. The low import capabilities are therefore discussed in relation to the possible role of the carotenoids in the translocation of cytosolically synthesized proteins into the plastidic compartment. 相似文献
11.
Import of proteins into mitochondria: a multi-step process 总被引:17,自引:0,他引:17
Translocation of precursor proteins from the cytosol into mitochondria is a multi-step process. The generation of translocation intermediates, i.e. the reversible accumulation of precursors at distinct stages of their import pathway into mitochondria ('translocation arrest'), has allowed the experimental characterization of distinct functional steps of protein import. These steps include: ATP-dependent unfolding of precursors; specific recognition of precursors by distinct receptors on the mitochondrial surface; interaction of precursors; specific recognition of precursors by distinct receptors on the mitochondrial surface; interaction of precursors with a general insertion protein ('GIP') in the outer mitochondrial membrane; membrane-potential-dependent translocation into the inner membrane at contact sites between both membranes; proteolytic processing of precursors; and intramitochondrial sorting of precursors via the matrix space ('conservative sorting'). The functional characteristics unveiled by studying mitochondrial protein import appear to be of general interest for investigations on intracellular protein sorting. 相似文献
12.
Employing transgenic Arabidopsis plants, we analyzed the mechanism for the translocation of peroxisomal proteins from the cytosol into the matrix that is mediated by the N-terminal targeting signal. A hybrid Arabidopsis variety was generated which accumulates two kinds of originally bacterial proteins, beta-glucuronidase (GUS) and a GUS chimeric protein designated as CS-delta C42-GUS, that carries the N-terminal targeting signal for glyoxysomal citrate synthase. Because the CS-delta C42-GUS is targeted to peroxisomes but had never been observed to be processed to produce the mature protein, it can be distinguished from the GUS protein by its molecular size. Cell fractionation analyses showed that the native GUS protein, although lacking the targeting signal, was co-localized with the CS-delta C42-GUS protein in the peroxisomes of the hybrid plant. It is suggested that the native GUS protein forms oligomeric structures with the peroxisome-targeted chimeric proteins and can therefore be transported into peroxisomes. Sucrose density gradient centrifugation revealed that the native GUS and the chimeric GUS indeed are present both as a dimer and a tetramer in the Arabidopsis hybrid variety. 相似文献
13.
Most of our knowledge regarding the process of protein import into mitochondria has come from research employing fungal systems. This review outlines recent advances in our understanding of this process in mammalian cells. In particular, we focus on the characterisation of cytosolic molecular chaperones that are involved in binding to mitochondrial-targeted preproteins, as well as the identification of both conserved and novel subunits of the import machineries of the outer and inner mitochondrial membranes. We also discuss diseases associated with defects in import and assembly of mitochondrial proteins and what is currently known about the regulation of import in mammals. 相似文献
14.
Proteins of the intermembrane space (IMS) of mitochondria are typically synthesized without presequences. Little is known about their topogenesis. We used Tim13, a member of the 'small Tim protein' family, as model protein to investigate the mechanism of translocation into the IMS. Tim13 contains four conserved cysteine residues that bind a zinc ion as cofactor. Import of Tim13 did not depend on the membrane potential or ATP hydrolysis. Upon import into mitochondria Tim13 adopted a stably folded conformation in the IMS. Mutagenesis of the cysteine residues or pretreatment with metal chelators interfered with folding of Tim13 in vitro and impaired its import into mitochondria. Upon depletion of metal ions or modification of cysteine residues, imported Tim13 diffused back out of the IMS. We propose an import pathway in which (1) Tim13 can pass through the TOM complex into and out of the IMS in an unfolded conformation, and (2) cofactor acquisition stabilizes folding on the trans side of the outer membrane and traps Tim13 in the IMS, and drives unidirectional movement of the protein across the outer membrane of mitochondria. 相似文献
15.
How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes) 总被引:31,自引:0,他引:31
P Borst 《Biochimica et biophysica acta》1986,866(4):179-203
All microbody proteins studies, including one microbody membrane protein, are made on free polysomes and imported post-translationally. This holds for animal tissues, plants, and fungi. The majority of microbody protein sub-units are synthesized in a form not detectably different from mature sub-units. In five cases a larger precursor protein has been found. The position of the extra piece in this precursor is not known. In two of the five cases, processing of the precursor is not coupled to import; in the other three this remains to be determined. It is not even known whether information in the prepiece contributes to topogenesis, or serves other purposes. Microbody preparations from Neurospora, plant tissue and rat liver can take up some newly synthesized microbody proteins in vitro. In most cases uptake is inefficient. No special requirements for uptake have been established and whether a receptor is involved is not yet known. Several examples have been reported of peroxisomal enzymes with a counterpart in another cell compartment. With the exception of catalase, no direct evidence is available in any of these cases for two isoenzymes specified by the same gene. In the Zellweger syndrome, a lethal hereditary disease of man, characterized by a lack of peroxisomes, the levels of several enzymes of lipid metabolism are strongly decreased. In contrast, D-amino-acid oxidase, L-alpha-hydroxyacid oxidase and catalase levels are normal. The catalase resides in the cytosol. Since there is no separate gene for cytosolic catalase, the normal catalase levels in Zellweger cells show that some peroxisomal enzymes can mature and survive stably in the cytosol. It is possible that maturation of the peroxisomal enzyme in the cytoplasm can account for the finding of cytosolic catalase in some normal mammalian cells. The glycosomes of trypanosomes are microbodies that contain a glycolytic system. Comparison of the glycosomal phosphoglycerate kinase with its cytosolic counterpart has shown that these isoenzymes are 93% homologous in amino-acid sequence, but less than 50% homologous to the corresponding enzymes of yeast and mammals. This implies that few alterations are required to direct a protein into microbodies. This interpretation is supported by the evidence for homology between some microbody and mitochondrial isoenzymes in other organisms mentioned under point 4. The major changes of the glycosomal phosphoglycerate kinase relative to the cytosolic enzyme are a large increase in positive charge and a C-terminal extension of 20 amino acids.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
16.
I S Skerjanc W P Sheffield S K Randall J R Silvius G C Shore 《The Journal of biological chemistry》1990,265(16):9444-9451
The matrix-targeting signal of mitochondrial preornithine carbamyl transferase has been fused to either murine dihydrofolate reductase (pODHFR) or bacterial chloramphenicol acetyltransferase (pOCAT). Loosening of the tightly folded "native" structure of the two proteins following their synthesis in a rabbit reticulocyte lysate was assayed by the acquisition of protease sensitivity (pODHFR and pOCAT) or by the loss of enzyme activity (pOCAT). By these criteria, the bulk population of both precursor proteins was tightly folded following release from the ribosome, even in the presence of ATP and excess reticulocyte lysate. Neither protein unfolded as a consequence of binding to the surfaces of anionic liposomes or intact mitochondria. However, a non-native form of full-length pOCAT, exhibiting a loss of enzymatic activity and an enhanced protease sensitivity, was detected in association with a submitochondrial fraction that banded between the inner and outer mitochondrial membrane fractions on sucrose density gradients. Delivery of the precursor molecule to this position required ATP and a proteinaceous component on the surface of the organelle. 相似文献
17.
Characterisation of the amount of protein import of the alternative oxidase (AOX) and the F(A)d precursor proteins (previously shown to use different import pathways) into mitochondria from developing soybean tissues indicated that they displayed different patterns. Import of the AOX declined in both cotyledon and root mitochondria with increasing age, whereas the import of the F(A)d into cotyledon mitochondria remained high throughout the same period. Using primary leaf mitochondria, it was evident that import of AOX remained high while it declined in cotyledon and root mitochondria. The amount of import of the AOX into mitochondria from different tissues closely matched the amount of the Tom 20 receptor. 相似文献
18.
19.
20.
Early events in the transport of proteins into mitochondria. Import competition by a mitochondrial presequence. 总被引:5,自引:0,他引:5
Studies with a synthetic presequence peptide, F1 beta 1-20, corresponding to the NH2-terminal 20 amino acids of the F1-ATPase beta-subunit precursor (pF1 beta) show that although this peptide binds avidly to phospholipid bi-layers it does not efficiently compete for import of full-length precursor into mitochondria, Ki approximately 100 microM (Hoyt, D.W., Cyr, D.M., Gierasch, L.M., and Douglas, M.G. (1991) J. Biol. Chem. 266, 21693-21699). Herein we report that longer F1 beta presequence peptides F1 beta 1-32 + 2, F1 beta 1-32SQ + 2, and F1 beta 21-51 + 3 compete for mitochondrial import at 1000-, 250-, and 25-fold lower concentrations, respectively, than F1 beta 1-20. A longer peptide, F1 beta 1-51 + 3, was no more effective as an import competitor than F1 beta 1-32 + 2. Both minimal length and amphiphilic character appear required in order for F1 beta peptides to block mitochondrial import. Import competition by longer F1 beta peptides seems to occur at a step common to all precursors since they blocked import of precursors to F1-ATPase alpha- and beta-subunits and the ADP/ATP carrier protein. Dissipation of membrane potential (delta psi) across the inner mitochondrial membrane is observed in the presence of F1 beta-peptides, but this mechanism alone does not account for the observed import inhibition. F1 beta 1-32 + 2 and 21-51 + 3 block import of pF1 beta 100% at peptide concentrations which dissipate delta psi less than 25%. In contrast, experiments with valinomycin demonstrate that when mitochondrial delta psi is reduced 25% import of pF1 beta is inhibited only 25%. Therefore, at least 75% of maximal import inhibition observed in the presence of F1 beta 1-32 + 2 and F1 beta 21-51 + 3 does not result from dissipation of delta psi. Import inhibition by F1 beta-peptides is reversible and can be overcome by increasing the amount of full-length precursor in import reactions. F1 beta presequence peptides and full-length precursor are therefore likely to compete for a common import step. Presequence dependent binding of pF1 beta to trypsin-sensitive elements on the outer mitochondrial membrane is insensitive to inhibitory concentrations of F1 beta presequence peptide. We conclude that import inhibition by F1 beta presequence peptides is competitive and occurs at a site beyond initial interaction of precursor proteins with mitochondria. 相似文献