首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Illegitimate recombination is the dominant mechanism of recombination in mammalian somatic cells. It is responsible for most genome rearrangements such as translocations, deletions and integrations. Little is known as yet about the mechanism of illegitimate recombination and the enzymes involved. Recently, it has been shown that intrinsically bent DNA, also known as curved DNA, is present at chromosomal sites of illegitimate recombination events. Here we report that KIN17, a new mouse nuclear protein, binds to the curved DNA fragments found at illegitimate recombination sites.  相似文献   

2.
The characterization of plasmid-genomic DNA junctions following plant transformation has established links between DNA double-strand break repair (DSBR), illegitimate recombination and plasmid DNA integration. The limited information on plasmid-plasmid junctions in plants comes from the dicot species tobacco and Arabidopsis. We analyzed 12 representative transgenic rice lines, carrying a range of transforming plasmid rearrangements, which predominantly reflected microhomology mediated illegitimate recombination involving short complementary patches at the recombining ends. Direct end-ligation, in the absence of homology between the recombining molecules, occurred only rarely. Filler DNA was found at some of the junctions. Short, purine-rich tracts were present, either at the junction site or in the immediate flanking regions. Putative DNA topoisomerase I binding sites were clustered around the junctions. Although different regions of the transforming plasmid were involved in plasmid-plasmid recombination, we showed that a 19 bp palindromic sequence, including the TATA box of the CaMV 35S promoter, acted as a recombination hotspot. The purine-rich half of the palindromic sequence was specifically involved at the recombination junctions. This recombination hotspot is located within the 'highly recombinogenic' region of the full-length CaMV RNA that has been shown to promote viral recombination in dicot plants. Clustering of plasmid recombination events in this highly recombinogenic region, even in the absence of viral enzymes and other cis-acting elements proves that the plant cellular machinery alone is sufficient to recognize and act on these viral sequences. Our data also show the similarity between mechanisms underlying junction formation in dicot and monocot plants transformed using different procedures.  相似文献   

3.
In order to elucidate the mechanisms of illegitimate recombination in eukaryotes, we have studied the structure of DNA fragments integrated by illegitimate recombination into the genome of fission yeast. Nonhomologous recombination was rarely identified when a long region of homology with the chromosomal leu1 + gene was present in the introduced leu1::ura4 + DNA fragment; but a decrease in length of homology leads to an increase in the ratio of nonhomologous to homologous recombination events. The introduced DNA fragments were integrated into different sites in the chromosomes by nonhomologous recombination. The results suggested that there are multiple modes of integration; most events simply involve both ends of the fragments, while in other cases, fragments were integrated in a more complicated manner, probably via circularization or multimerization. To analyze the mechanism of the major type of integration, DNA fragments containing the recombination junctions of three recombinants were amplified by inverted polymerase chain reaction (IPCR) and their nucleotide sequences were determined. There was no obvious homology between introduced DNA and chromosomal DNA at these recombination sites. Furthermore it was found that each terminal region of the introduced DNA was deleted, but that there were no or very small deletions in the target sites of chromosomal DNA. Two models are proposed to explain the mechanism of nonhomologous integration.  相似文献   

4.
Illegitimate recombination events in mammalian cells often contain extraneous nucleotides or filler DNA at the recombinant joins. The polyomavirus-transformed cell line 7axB has previously been found to contain 37 base pairs (bp) of filler DNA at one virus-host join of the single insert of integrated viral DNA (A. Hayday, H. E. Ruley, and M. Fried, J. Virol. 44:67-77, 1982). By using a synthetic oligomer of these 37 bp as a probe, we demonstrated that this filler DNA is an inverted duplication of a single-copy rat sequence found 650 bp upstream from this virus-host join. The other virus-host join appears to be the result of a simple illegitimate recombination event between viral and host sequences. This is the first identification of filler DNA as a transposed copy of a chromosomal sequence. The relevance of the recombination events studied to cellular rearrangements and viral integration is discussed.  相似文献   

5.
M Szabó  J Kiss  G Kótány  F Olasz 《Plasmid》1999,42(3):192-209
In the present study we report on the excision of IS30 elements and IS30-derived composite transposons. Frequent loss of IS30 was observed during dissolution of dimeric IS30 structures, containing IR-IR junctions, leading to resealed donor molecules. In contrast, unambiguous transpositional excision resulting in resealed remainder products could not be identified in the case of a monomeric element. The bias in the excision of monomeric and dimeric IS30 structures indicates a difference in the molecular mechanism of transposition of IS30 monomers and dimers. Sequence data on the rarely detected plasmids missing full IS or Tn copies rather suggest that all products were derived from illegitimate recombination. The reaction occurred between short homologies and was independent of the transposase activity. Similar IS30 excision events accompanied by multiple plasmid or genome rearrangements were detected in Pseudomonas putida and Rhizobium meliloti, yielding stable replicons that retained the selective marker gene of the transposon. We provide evidence that both transposition and illegitimate recombination can contribute to the stabilization of replicons through the elimination of IS elements, which emphasizes the evolutionary significance of these events.  相似文献   

6.
Extra nucleotides (termed filler DNA) are found at about 10% of the junctions of the genetic rearrangements that arise by illegitimate recombination in mammalian cells. Such filler DNAs could arise by the joining of oligonucleotide fragments to broken ends prior to end joining. We tested this possibility by microinjecting mixtures of defined oligonucleotides with SV40 genomes that were linearized in the intron for T antigen, a site where incorporation of extra nucleotides does not impair viability. Using an injection ratio of 1000 oligonucleotides per DNA end, we screened viable genomes for incorporation of single-stranded and double-stranded oligonucleotides with varying degrees of complementarity to the ends of the linear SV40 molecules. Genomes from 510 independent plaques were screened by restriction digestion to identify those that had picked up a restriction site unique to the injected oligonucleotides. Double-stranded oligonucleotides that were fully complementary to the SV40 ends were readily incorporated, but uptake of the other oligonucleotides was not detected by restriction analysis. Nucleotide sequences of junctions from 12 genomes derived from co-injection of noncomplementary oligonucleotides revealed two with filler DNA, but neither could be assigned unambiguously to the injected oligonucleotides.  相似文献   

7.
Summary The illegitimate integration of plasmid pGG20 (the hybrid between Staphylococcus aureus plasmid pE194 and Escherichia coli plasmid pBR322) into the Bacillus subtilis chromosome was studied. It was found that nucleotide sequences of both parental plasmids could be involved in this process. The recombinant DNA junctions between plasmid pGG20 and the chromosome were cloned and their nucleotide sequences were determined. The site of recombination located on the pBR322 moiety carried a short region (8 bp) homologous with the site on the chromosome. The nucleotide sequences of the pE194 recombination sites did not share homology with chromosomal sequences involved in the integration process. Two different pathways of illegitimate recombination in B. subtilis are suggested.  相似文献   

8.
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.  相似文献   

9.
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.  相似文献   

10.
Illegitimate recombination is the prevailing molecular mechanism for the integration of recombinant DNA into the genome of most eukaryotic systems and the generation of deletions by intrachromosomal recombination. We developed a ?selectable marker system to screen for intrachromosomal illegitimate recombination events in order to assess the sequence and structure-specific requirements for illegitimate recombination in tobacco. In 12 illegitimate recombination products analysed, we found that all deletion termini localise to sites of palindromic structures or to A+T-rich DNA elements. All deletion termini showed microhomologies of two to six nucleotides. In three plants, the recombination products contained filler-DNA or an inversion of an endogenous segment. Our data strongly suggest that illegitimate recombination in plants is mediated by a DNA synthesis-dependent process, and that this mechanism is promoted by DNA regions that can form palindromic structures or facilitate DNA unwinding.  相似文献   

11.
The relative importance of gross chromosomal rearrangements to adaptive evolution has not been precisely defined. The Saccharomyces cerevisiae flor yeast strains offer significant advantages for the study of molecular evolution since they have recently evolved to a high degree of specialization in a very restrictive environment. Using DNA microarray technology, we have compared the genomes of two prominent variants of S. cerevisiae flor yeast strains. The strains differ from one another in the DNA copy number of 116 genomic regions that comprise 38% of the genome. In most cases, these regions are amplicons flanked by repeated sequences or other recombination hotspots previously described as regions where double-strand breaks occur. The presence of genes that confer specific characteristics to the flor yeast within the amplicons supports the role of chromosomal rearrangements as a major mechanism of adaptive evolution in S. cerevisiae. We propose that nonallelic interactions are enhanced by ethanol- and acetaldehyde-induced double-strand breaks in the chromosomal DNA, which are repaired by pathways that yield gross chromosomal rearrangements. This mechanism of chromosomal evolution could also account for the sexual isolation shown among the flor yeast.  相似文献   

12.
We have previously shown that integration of a polyoma vector containing rodent repetitive elements into rat cellular DNA is non-random (Wallenburg et al. J. Virol. 50: 678-683). Junctions between the polyoma vector and the host DNA occur in the repetitive sequences of the vector about ten times more frequently than would be expected if sequences from the vector were used randomly for integration. In this paper we looked at the host sequences involved in these junctions. Our analysis did not reveal any repetitive or specific sequences and we presume therefore that the repetitive sequences of the vector acted as hot spots for illegitimate recombination. We also analysed the integration mechanism and found that: First, even though the polyoma vector was transfected in the presence of carrier DNA, integration did not involve the formation of a transgenome. Second, in at least one of the clones analysed, integration resulted in deletion of host DNA sequences. Third, the host DNA displaced at the integration site was considerably longer than the integrated segment.  相似文献   

13.
14.
Mammalian cells contain numerous nonallelic repeated sequences, such as multicopy genes, gene families, and repeated elements. One common feature of nonallelic repeated sequences is that they are homeologous (not perfectly identical). Our laboratory has been studying recombination between homeologous sequences by using LINE-1 (L1) elements as substrates. We showed previously that an exogenous L1 element could readily acquire endogenous L1 sequences by nonreciprocal homologous recombination. In the study presented here, we have investigated the propensity of exogenous L1 elements to be involved in a reciprocal process, namely, crossing-overs. This would result in the integration of the exogenous L1 element into an endogenous L1 element. Of over 400 distinct integration events analyzed, only 2% involved homologous recombination between exogenous and endogenous L1 elements. These homologous recombination events were imprecise, with the integrated vector being flanked by one homologous and one illegitimate junction. This type of structure is not consistent with classical crossing-overs that would result in two homologous junctions but rather is consistent with one-sided homologous recombination followed by illegitimate integration. Contrary to what has been found for reciprocal homologous integration, the degree of homology between the exogenous and endogenous L1 elements did not seem to play an important role in the choice of recombination partners. These results suggest that although exogenous and endogenous L1 elements are capable of homologous recombination, this seldom leads to crossing-overs. This observation could have implications for the stability of mammalian genomes.  相似文献   

15.
Studies of Ig and TCR genes in transformed lymphocytes of scid mice have revealed aberrant DNA rearrangements. Here we present a more detailed analysis of the Igh gene recombination in nine scid pre-B cell lines transformed by Abelson murine leukemia virus. We found 85% of the rearranged Igh alleles to contain abnormal Dh-Jh deletions of varying size. All of these deletions encompassed Jh elements and extended into the Igh enhancer region, occasionally involving the switch (S) region of the C mu gene. Some of these rearrangements removed most of the Dh elements, but none appeared to extend to the Vh genes. DNA sequence analysis of the two abnormally rearranged Igh alleles in one pre-B cell line showed that no Dh or Jh coding sequences were retained at the recombination sites though heptamer-like (CACTGTG) recognition signal sequences were present in the absence of nonamer (GGTTTTTGT) recognition signal sequences. These results imply that a deregulated recombinase activity may be responsible for the abnormal Dh-Jh deletions and the absence of Vh-Dh joining in established lines of Abelson murine leukemia virus-transformed scid pre-B cells.  相似文献   

16.
In the present study we report on the excision of IS30 elements and IS30-derived composite transposons. Frequent loss of IS30 was observed during dissolution of dimeric IS30 structures, containing IR–IR junctions, leading to resealed donor molecules. In contrast, unambiguous transpositional excision resulting in resealed remainder products could not be identified in the case of a monomeric element. The bias in the excision of monomeric and dimeric IS30 structures indicates a difference in the molecular mechanism of transposition of IS30 monomers and dimers. Sequence data on the rarely detected plasmids missing full IS or Tn copies rather suggest that all products were derived from illegitimate recombination. The reaction occurred between short homologies and was independent of the transposase activity. Similar IS30 excision events accompanied by multiple plasmid or genome rearrangements were detected in Pseudomonas putida and Rhizobium meliloti, yielding stable replicons that retained the selective marker gene of the transposon. We provide evidence that both transposition and illegitimate recombination can contribute to the stabilization of replicons through the elimination of IS elements, which emphasizes the evolutionary significance of these events.  相似文献   

17.
After Agrobacterium-mediated plant transformation, multiple T-DNAs frequently integrate at the same position in the plant genome, resulting in the formation of inverted and direct repeats. Because these inverted repeats cannot be amplified and analyzed by PCR, Arabidopsis root cells were co-transformed with two different T-DNAs with distinct sequences adjacent to the T-DNA borders. Nine direct or inverted T-DNA border junctions were analyzed at the sequence level. Precise end-to-end fusions were found between two right border ends, whereas imprecise fusions and filler DNA were present in T-DNA linkages containing a left border end. The results suggest that end-to-end ligation of double-stranded T-DNAs occurs especially between right T-DNA ends and that illegitimate recombination on the basis of microhomology, deletions, repair activities and insertions of filler DNA is involved in the formation of left border T-DNA junctions. Therefore, a similar illegitimate recombination mechanism is proposed that is involved in the formation of complex T-DNA inserts as well as in the integration of the T-DNA in the plant genome.  相似文献   

18.
The maize Activator (Ac)/Dissociation (Ds) transposable element system has been used in a variety of plants for insertional mutagenesis. Ac/Ds elements can also generate genome rearrangements via alternative transposition reactions which involve the termini of closely linked transposons. Here, we introduced a transgene containing reverse-oriented Ac/Ds termini together with an Ac transposase gene into rice (Oryza sativa ssp. japonica cv. Nipponbare). Among the transgenic progeny, we identified and characterized 25 independent genome rearrangements at three different chromosomal loci. The rearrangements include chromosomal deletions and inversions and one translocation. Most of the deletions occurred within the T-DNA region, but two cases showed the loss of 72 kilobase pairs (kb) and 79 kb of rice genomic DNA flanking the transgene. In addition to deletions, we obtained chromosomal inversions ranging in size from less than 10 kb (within the transgene DNA) to over 1 million base pairs (Mb). For 11 inversions, we cloned and sequenced both inversion breakpoints; in all 11 cases, the inversion junctions contained the typical 8 base pairs (bp) Ac/Ds target site duplications, confirming their origin as transposition products. Together, our results indicate that alternative Ac/Ds transposition can be an efficient tool for functional genomics and chromosomal manipulation in rice.  相似文献   

19.
W. B. Eggleston  N. R. Rim    J. K. Lim 《Genetics》1996,144(2):647-656
The structure of chromosomal inversions mediated by hobo transposable elements in the Uc-1 X chromosome was investigated using cytogenetic and molecular methods. Uc-1 contains a phenotypically silent hobo element inserted in an intron of the Notch locus. Cytological screening identified six independent Notch mutations resulting from chromosomal inversions with one breakpoint at cytological position 3C7, the location of Notch. In situ hybridization to salivary gland polytene chromosomes determined that both ends of each inversion contained hobo and Notch sequences. Southern blot analyses showed that both breakpoints in each inversion had hobo-Notch junction fragments indistinguishable in structure from those present in the Uc-1 X chromosome prior to the rearrangements. Polymerase chain reaction amplification of the 12 hobo-Notch junction fragments in the six inversions, followed by DNA sequence analysis, determined that each was identical to one of the two hobo-Notch junctions present in Uc-1. These results are consistent with a model in which hobo-mediated inversions result from homologous pairing and recombination between a pair of hobo elements in reverse orientation.  相似文献   

20.
Diversity in immunoglobulin antigen receptors is generated in part by V(D)J recombination. In this process, different combinations of gene elements are joined in various configurations. Products of V(D)J recombination are coding joints, signal joints, and hybrid junctions, which are generated by deletion or inversion. To determine their role in the generation of diversity, we have examined two sorts of recombination products, coding joints and hybrid junctions, that have formed by inversion at the mouse immunoglobulin heavy-chain locus. We developed a PCR assay for quantification and characterization of inverted rearrangements of DH and JH gene elements. In primary cells from adult mice, inverted DJH rearrangements are detectable but they are rare. There were approximately 1,100 to 2,200 inverted DJH coding joints and inverted DJH hybrid junctions in the marrow of one adult mouse femur. On day 16 of gestation, inverted DJH rearrangements are more abundant. There are approximately 20,000 inverted DJH coding joints and inverted DJH hybrid junctions per day 16 fetal liver. In fetal liver cells, the number of inverted DJH rearrangements remains relatively constant from day 14 to day 16 of gestation. Inverted DJH rearrangements to JH4, the most 3' JH element, are more frequently detected than inverted DJH rearrangements to other JH elements. We compare the frequencies of inverted DJH rearrangements to previously determined frequencies of uninverted DJH rearrangements (DJH rearrangements formed by deletion). We suggest that inverted DJH rearrangements are influenced by V(D)J recombination mechanistic constraints and cellular selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号