首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleotides and nucleosides play an important role in neurodevelopment acting through specific receptors. Ectonucleotidases are the major enzymes involved in controlling the availability of purinergic receptors ligands. ATP is co-released with several neurotransmitters and is the most important source of extracellular adenosine by catabolism exerted by ectonucleotidases. The main ectonucleotidases are named NTPDases (1–8) and 5′-nucleotidase. Adenosine is a powerful modulator of neurotransmitter release. Caffeine blocks adenosine receptor activity as well as adenosine-mediated neuromodulation. Considering the susceptibility of the immature brain to caffeine and the need for correct purinergic signaling during fetal development, we have analyzed the effects of caffeine exposure during gestational and lactational periods on nucleotide degradation and ectonucleotidase expression from the hippocampi of 7-, 14- and 21-days-old rats. Nucleotides hydrolysis was assessed by colorimetric determination of inorganic phosphate released. Ectonucleotidases expression was performed by RT-PCR. ATP and ADP hydrolysis displayed parallel age-dependent decreases in both control and caffeine-treated groups. AMP hydrolysis increased with caffeine treatment in 7-days-old rats (75%); although there was no significant difference in AMP hydrolysis between control (non caffeine-treated) rats and 14- or 21-days caffeine-treated rats. ADP hydrolysis was not affected by caffeine treatment. Caffeine treatment in 7- and 14-days-old rats decreased ATP hydrolysis when compared to the control group (19% and 60% decrease, respectively), but 21-days-treated rats showed an increase in ATP hydrolysis (39%). Expression levels of NTPDase 1 and 5 decreased in hippocampi of caffeine-treated rats. The expression of 5′-nucleotidase was not affected after caffeine exposure. The changes observed in nucleotide hydrolysis and ectonucleotidases expression could promote subtle effects on normal neural development considering the neuromodulatory role of adenosine.  相似文献   

2.
During a variety of insults to the brain adenine nucleotides are released in large quantities from damaged cells, triggering multiple cellular responses to injury. Here, we evaluated changes in extracellular ATP, ADP and AMP hydrolysis at different times (0–24 hours) after unilateral cortical stab injury (CSI) in adult rats. Results demonstrated that 24 hours following CSI, ATP and ADP hydrolyzing activities were not significantly altered in injured cortex. Based on calculated V ATP/V ADP ratio it was concluded that ATP/ADP hydrolysis was primarily catalyzed by NTPDase1 enzyme form. In contrast, AMP hydrolysis, catalyzed by 5’-nucleotidase, was significantly reduced at least 4 hours following CSI. Kinetic analysis and Lineweaver-Burk transformation of the enzyme velocities obtained over the range of AMP concentrations (0.05–1.50 mM) revealed that inhibition of 5’-nucleotidase activity after CSI was of the uncompetitive type. Taken together our data suggest that injured tissue has reduced potential for extracellular metabolism of adenine nucleotides in early stages after CSI.  相似文献   

3.
4.
Extracellular adenine nucleotide hydrolysis in the circulation is mediated by the action of an NTPDase (CD39, apyrase) and of a 5′-nucleotidase (CD73), presenting as a final product, adenosine. Among other properties described for adenine nucleotides, an anti-cancer activity is suggested, since ATP is considered a cytotoxic molecule in several tumour cell systems. Conversely, some studies demonstrate that adenosine presents a tumour-promoting activity. In this study, we evaluated the pattern of adenine nucleotide hydrolysis by serum and platelets from rats submitted to the Walker 256 tumour model. Extracellular adenine nucleotide hydrolysis by blood serum and platelets obtained from rats at, 6, 10 and 15 days after the subcutaneous Walker 256 tumour inoculation, was evaluated. Our results demonstrate a significant reduction in ATP, ADP and AMP hydrolysis in blood serum at 6, 10 and 15 days after tumour induction. In platelets, a significant reduction in ATP and AMP hydrolysis was observed at 10 and 15 days after tumour induction, while an inhibition of ADP hydrolysis was observed at all times studied. Based on these results, it is possible to suggest a physiologic protection mechanism against the tumoral process in circulation. The inhibition in nucleotide hydrolysis observed probably maintains ATP levels elevated (cytotoxic compound) and, at the same time, reduces the adenosine production (tumoor-promoting molecule) in the circulation.  相似文献   

5.
Changes in transport, receptors and production of extracellular adenosine have been observed after induction of hyperthyroidism. Adenosine is associated with inhibitory actions such as reduction in release of excitatory neurotransmitters and antinociception at spinal site. In contrast, ATP acts as an excitatory neurotransmitter and produces pronociceptive actions. ATP may be completely hydrolyzed to adenosine by an enzyme chain constituted by an ATP diphosphohydrolase and an ecto-5'-nucleotidase, as previously described in the spinal cord. Thus, we now investigated the effects of the hyperthyroidism on adenine nucleotide hydrolysis in the spinal cord and verified the nociceptive response in this pathology during different phases of development. Hyperthyroidism was induced in male Wistar rats, aged 5, 60 and 330 days by daily intraperitoneal injections of L-thyroxine (T4) for 14 days. Nociception was assessed with a tail-flick apparatus. Rats starting the treatment aged 5 days demonstrated a significant increase in ADP and AMP hydrolysis and increased tail-flick latency (TFL). In contrast, in the spinal cord from hyperthyroid rats aged 60 and 330 days old, the hydrolysis of ATP, ADP and AMP were significantly decreased. Accordingly, the tail-flick latency was decreased, indicating a hyperalgesic response. These results suggest the involvement of ecto-nucleotidases in the control of the hyperthyroidism-induced nociceptive response in rats at distinct developmental stages.  相似文献   

6.
Depression is a serious condition associated with considerable morbidity and mortality. Selective serotonin reuptake inhibitors and tricyclic antidepressants, such as fluoxetine and nortriptyline, respectively, were commonly used in treatment for depression. Selective serotonin reuptake inhibitors have been associated with increased risk of bleeding complications, possibly as a result of inhibition of platelet aggregation. ATP, ADP and adenosine are signaling molecules in the vascular system and nucleotidases activities are considered an important thromboregulatory system which functions in the maintenance of blood fluidity. Therefore, here we investigate the effect of in vivo (acute and chronic) and in vitro treatments with the antidepressant drugs on nucleotidases activities in rat blood serum. In acute treatment, nortriptyline decreased ATP hydrolysis (41%), but not altered ADP and AMP hydrolysis. In contrast, fluoxetine did not alter NTPDase and ecto-5'-nucleotidase activities. A significant inhibition of ATP, ADP, and AMP hydrolysis were observed in chronic treatment with fluoxetine (60%, 32%, and 42% for ATP, ADP, and AMP hydrolysis, respectively). Similar effects were shown in chronic treatment with nortriptyline (37%, 41%, and 30% for ATP, ADP, and AMP hydrolysis, respectively). In addition, there were no significant changes in NTPDase and ecto-5'-nucleotidase activities when fluoxetine and nortriptyline (100, 250, and 500 microM) were tested in vitro. Our results have shown that fluoxetine and nortriptyline changed the nucleotide catabolism, suggesting that homeostasis of vascular system can be altered by antidepressant treatments.  相似文献   

7.
Early life events lead to behavioral and neurochemical changes in adulthood. The aim of this study is to verify the effects of neonatal handling on spatial memory, nitric oxide (NO) production, antioxidant enzymatic activities and DNA breaks in the hippocampus of male and female adult rats. Litters of rats were non-handled or handled (10 min/day, days 1–10 after birth). In adulthood they were subjected to a Morris water maze or used for biochemical evaluations. Female handled rats showed impairment in spatial learning. They also showed decreased NO production, while no effects were observed in these parameters in male rats. No effects were observed on the number of hippocampal NADPH diaphorase positive cells. In the Comet Assay, male handled rats showed increased DNA breaks index when compared to non-handled ones. We conclude that neonatal handling impairs learning performance in a sex-specific manner, what may be related to NO decreased levels.  相似文献   

8.
ATP and ADP increased in cut-injured sweet potato root tissue during the 3 to 6-hr incubation period, and showed the maximum for the 9 to 18-hr, and 6 to 9-hr incubation periods, respectively, then decreased. ATP was present in the highest amount among ATP, ADP and AMP throughout the 72-hr incubation period, while AMP was in the lowest. Total acid-soluble nucleotides increased gradually, and showed the peak content at the 12-hr incubation period, and decreased thereafter. Adenine mononucleotides such as ATP, ADP and AMP occupied about 40 to 65% of total acid-soluble nucleotides.  相似文献   

9.
The biochemical background of ethanol-(ETOH) induced gastric mucosal damage was studied in rats with intact vagus and after acute surgical vagotomy. Observations were carried out on Sprague-Dawley (CFY) strain rats of both sexes. Gastric mucosal lesions were produced by intragastric administration of 1 ml 96% ethanol. Bilateral truncal surgical vagotomy was carried out 30 min before ETOH administration. The number and severity of gastric mucosal lesions was noted 1 h after ETOH administration. Biochemical measurements (gastric mucosal level of ATP, ADP, AMP, cAMP and lactate) were carried out from the total homogenized gastric mucosa. The adenylate pool (ATP + ADP + AMP), energy charge ((ATP + 0.5 ADP)/(ATP + ADP + AMP)) and ratio of ATP/ADP were calculated. It was found that: 1) ATP transformation into ADP increased, while ATP transformation in cAMP decreased in ethanol-treated animals with intact vagus nerve, while these transformations were quite the opposite in vagotomized animals; 2) no significant changes were found in the tissue level of lactate: and 3) the extent of biochemical changes was significantly less after surgical vagotomy. It is concluded that an intact vagus is basically necessary for the metabolic adaptation of gastric mucosa.  相似文献   

10.
The present experiments have shown that the activity of organic pyrophosphatase from microsomes of wheat seedlings is strongly inhibited by alpha, beta-methylene and gamma-thio-ATP derivatives, which inhibit the hydrolysis of both ATP and ADP. It has been found that the main products of ATP hydrolysis are not ADP but AMP and orthophosphate. The rate of hydrolysis of ATP is not increased by addition of ADP to the incubation medium. The ratio of the reaction products, Pi and AMP, amounts to 1.7-1.8 with ATP as substrate and is close to 1.0 with ADP.  相似文献   

11.
Changes in the energy state of tissues in spontaneously hypertensive rats]   总被引:1,自引:0,他引:1  
The contents of adenine nucleotides (ATP, ADP, AMP), phosphocreatine (PCr) and creatine (Cr) in the heart, skeletal muscle, liver and spleen in spontaneously hypertensive (SHR) and normotensive (WKY) rats. The ATP/ADP ratio in cardiac tissue was lower in SHR compared with WKY, while myocardial contents of adenine nucleotides, PCr and Cr did not differ significantly between the groups. A lower ATP/ADP ratio in the skeletal muscle SHR of was accompanied by a reduction of PCr content comparing with these indices in WKY rats. The liver and spleen of SHR exhibited lower ATP contents and higher ADP and AMP levels compared with those ones in WKY rats, despite of the close values of adenine nucleotide pools (sigma AN = ATP + ADP + AMP). This redistribution of tissue adenine nucleotides was corresponded to lower energy charges (EC = (ATP + 0.5 ADP)/sigma AN) and ATP/ADP ratios in SHR group. The reduction of the energy state of tissues in SHR rats increased in the following rank: heart > skeletal muscle > liver > spleen, thus, reflecting progressive decrease of intensity of oxidative metabolism. The results suggest changes in the balance of rates of ATP formation and hydrolysis occur at the system level in primary hypertension. Probably, consequences of such rearrangement in energy metabolism are functional disturbances of plasma membrane and sacroplasmic reticulum well-documented in a number of experimental and clinical studies.  相似文献   

12.
The rate of ATP hydrolysis in solutions of F-actin at steady state in 50 mM KC1, 0.1 mM CaC12 was inhibited by AMP and ADP. The inhibition was competitive with ATP (Km of about 600 microM) with Ki values of 9 microM for AMP and 44 microM for ADP. ATP hydrolysis was inhibited greater than 95% by 1 mM AMP. AMP had no effect on the time course of actin polymerization, ATP hydrolysis during polymerization, or the critical actin concentration. Simultaneous measurements of G-actin/F-actin subunit exchange and nucleotide exchange showed that nucleotide exchange occurred much more rapidly than subunit exchange; during the experiment over 50% of the F-actin-bound nucleotide was replaced when less than 1% of the F-actin subunits had exchanged. When AMP was present it was incorporated into the polymer, preventing incorporation of ADP from ATP in solution. F-actin with bound Mg2+ was much less sensitive to AMP than F-actin with bound Ca2+. These data provide evidence for an ATP hydrolysis cycle associated with direct exchange of F-actin-bound ADP for ATP free in solution independent of monomer-polymer end interactions. This exchange and hydrolysis of nucleotide may be enhanced when Ca2+ is bound to the F-actin protomers.  相似文献   

13.
Dysprosium catalyzes a rapid hydrolysis of both ATP and ADP, at ambient temperatures, pH 7.0, where no hydroxide precipitates. The reactive complexes, at pH 6.7, were found to contain 2Dy:1ATP and 3Dy:2ADP. AMP forms an insoluble complex containing 1Dy:2AMP, which does not hydrolyze. ATP also forms a soluble 1Dy:1ATP complex, which does not react. Dysprosium only catalyzes the hydrolysis of ATP above pH 5.8, where it has been titrated to the hydroxide. At the optimum pH (pH 7) the stoichiometric composition is Dy2.ATP.(OH)2, indicating that the active complex is neutral, whereas at pH 5.8 the stoichiometric composition is Dy2.ATP.(OH)+, indicating an inactive cationic complex. The mechanism proposed for the hydrolysis is consistent with those proposed for other in vitro systems known to catalyze the hydrolysis of ATP.  相似文献   

14.
Summary To investigate how lead, when used as trapping agent, influences the ATP hydrolysis and to study how ATP is catalyzed in histochemical systems, homogenized secretory enamel organs were incubated in histochemical [3H]-ATP media. Aliquots from the media were taken after 3, 10, 20 and 30 min, and ATP and formed metabolites were separated by electrophoresis and radiometrically quantitated.In media lacking both lead and homogenate 2% of the ATP was spontaneously hydrolyzed during 30 min incubation at room temperature. The presence of lead caused an additional 8% hydrolysis at pH 7.2 and an additional 20% hydrolysis at pH 9.4. In the presence of homogenate, however, lead caused a net decrease of the hydrolysis of ATP as well as of ADP and AMP. This enzyme inhibition varied from around zero to some 80%, depending on pH and substrates involved.In homogenate-containing lead media, at both pH 7.2 and 9.4, ATP was rapidly hydrolyzed primarily to ADP and subsequently to AMP and adenosine and/or inosine. After 5–10 min ADP constituted the predominant substrate at both pH:s. At pH 7.2 ADP remained so for the rest of the incubation, whereas at pH 9.4 AMP was the predominant substrate at the end of the incubation. AMP was the final catabolic product in experiments at pH 7.2, and adenosine and/or inosine at pH 9.4. Inorganic phosphate was liberated almost linearly during the whole incubation period.The results indicate that histochemical studies of substrate specific ATP-ases should be performed with short incubation times and, when high specific activities are present, in large quantities of incubation media to reduce interference by ADP and AMP hydrolyzing enzymes.  相似文献   

15.
ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system. Since the ecto-nucleotidase cascade that hydrolyzes ATP to adenosine is involved in the control of brain functions and previous studies realized in our laboratory have recently reported that acute administration of Arg decreases the NTPDase and 5′-nucleotidase activities of rat blood serum, in the present study we investigated the effect of arginine administration on NTPDase and 5′-nucleotidase activities by synaptosomes from hippocampus of rats. First, sixty-days-old rats were treated with a single or a triple intraperitoneal injection of arginine (0.8 g/Kg) or an equivalent volume of 0.9% saline solution (control) and were killed 1 h later. Second, rats received an intracerebroventricular injection of 1.5 mM arginine solution or saline (5 μL) and were killed 1 h later. We also tested the in vitro effect of arginine (0.1–1.5 mM) on nucleotide hydrolysis in synaptosomes from rat hippocampus. Results showed that intraperitoneal arginine administration did not alter nucleotide hydrolysis. On the other hand, arginine administered intracerebroventricularly reduced ATP (32%), ADP (30%) and AMP (21%) hydrolysis, respectively. In addition, arginine added to the incubation medium, provoked a decrease on ATP (19%), ADP (17%) and AMP (23%) hydrolysis, respectively. Furthermore, kinetic studies showed that the inhibitory effect of arginine was uncompetitive in relation to ATP, ADP and AMP. In conclusion, according to our results it seems reasonable to postulate that arginine alters the cascade involved in the extracellular degradation of ATP to adenosine.  相似文献   

16.
The growth of transformed mouse fibroblasts (3T6 cells) in medium containing 5% fetal bovine serum was inhibited after treatment with concentrations greater than 50 microM ATP, ADP, or AMP. Adenosine, the common catabolite of the nucleotides, had no effect on cell growth at concentrations below 1 mM. However, the following results indicate that the toxicity of ATP, ADP, and AMP is mediated by serum- and cell-associated hydrolysis of the nucleotides to adenosine. 1) ADP and AMP, but not ATP, were toxic to 3T6 cells grown in serum-free medium or medium in which phosphohydrolase activity of serum was inactivated. Under these conditions, the cells exhibited cell-associated ADPase and 5'-nucleotidase activity, but little ecto-ATPase activity. 2) Inhibition of adenosine transport in 3T6 cells by dipyridamole or S-(p-nitrobenzyl)-6-thioinosine prevented the toxicity of ATP in serum-containing medium and of ADP and AMP in serum-free medium. 3) A 16-24-h exposure to 125 microM AMP or ATP was needed to inhibit cell growth under conditions where serum- and cell-associated hydrolysis of the nucleotides generated adenosine in the medium continuously over the same time period. In contrast, 125 microM adenosine was completely degraded to inosine and hypoxanthine within 8-10 h. Furthermore, multiple doses of adenosine added to the cells at regular intervals over a 16-h period were significantly more toxic than an equivalent amount of adenosine added in one dose. Treatment of 3T6 cells with AMP elevated intracellular ATP and ADP levels and reduced intracellular UTP levels, effects which were inhibited by extracellular uridine. Uridine also prevented growth inhibition by ATP, ADP, and AMP. These and other results indicate that serum- and cell-associated hydrolysis of adenine nucleotides to adenosine suppresses growth by adenosine-dependent pyrimidine starvation.  相似文献   

17.
The effects of different doses (0.01-0.1-1.0-10.0/mg/kg-1) of beta-carotene were studied on gastric secretory responses of 4 hr pylorus-ligated rats: development of gastric mucosal damage (as assessed by number and severity of lesions) produced by intragastric administration of 0.6 M HCl; tissue level of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), adenylate pool (ATP + ADP + AMP), ratio of ATP X ADP-1, "energy charge" (ATP + 0.5 ADP X X (ATP + ADP + AMP)-1) (during the development of gastric mucosal damage by 0.6 M HCl and of gastric cytoprotection by beta-carotene. It was found that beta-carotene did not decrease the gastric secretory responses of 4 hr pylorus-ligated rats; The development of gastric mucosal damage could be decreased dose-dependently by the administration of beta-carotene; the ATP transformation could be decreased by beta-carotene; the tissue levels of cAMP and AMP could be increased significantly and dose-dependently by beta-carotene; the ratio of ATP X ADP-1 could be increased significantly and dose-dependently by beta-carotene; the values of adenylate pool and "energy charge" remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Summary. The main objective of the present study was to evaluate the in vivo and in vitro effect of Arg on serum nucleotide hydrolysis. The action of Nω-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase, on the effects produced by Arg was also examined. Sixty-day-old rats were treated with a single or a triple (with an interval of 1 h between each injection) intraperitoneal injection of saline (group I), Arg (0.8 g/kg) (group II), L-NAME (2.0 mg/kg or 20 mg/kg) (group III) or Arg (0.8 g/kg) plus L-NAME (2.0 mg/kg or 20 mg/kg) (group IV) and were killed 1 h later. The present results show that a triple Arg administration decreased ATP, ADP and AMP hydrolysis. Simultaneous injection of L-NAME (20 mg/kg) prevented such effects. Arg in vitro did not alter nucleotide hydrolysis. It is suggested that in vivo Arg administration reduces nucleotide hydrolysis in rat serum, probably through nitric oxide or/and peroxynitrite formation. Both are first authors.  相似文献   

19.
H M?rnstad 《Histochemistry》1977,50(4):301-311
To investigate how lead, when used as trapping agent, influences the ATP hydrolysis and to study how ATP is catalyzed in histochemical systems, homogenized secretory enamel organs were incubated in histochemical [3H]-ATP media. Aliquots from the media were taken after 3, 10, 20 and 30 min, the ATP and formed metabolites were separated by electrophoresis and radiometrically quantitated. In media lacking both lead and homogenate 2% of the ATP was spontaneously hydrolyzed during 30 min incubation at room temperature. The presence of lead caused an additional 8% hydrolysis at pH 7.2 and an additional 20% hydrolysis at pH 9.4. In the presence of homogenate, however, lead caused a net decrease of the hydrolysis of ATP as well as of ADP and AMP. This enzyme inhibition varied from around zero to some 80%, depending on pH and substrated involved. In homogenate-containing lead media, at both pH 7.2 AND 9.4, ATP was rapidly hydrolyzed primarily to ADP and subsequently to AMP and adenosine and/or inosine. After 5--10 min ADP constituted the predominant substrate at both pH:s. At pH 7.2 ADP remained so for the rest of the incubation, whereas at pH 9.4 AMP was predominant substrate at the end of the incubation. AMP was the finan catabolic product in experiments at pH 7.2, and adenosine and/or inosine at pH 9.4. Inorganic phosphate was liberated almost linearly during the whole incubation period. The results indicate that histochemical studies of substrate specific ATP-ases should be performed with short incubation times and, when high specific activities are present, in large quantities of incubation media to reduce interference by ADP and AMP hydrolyzing enzymes.  相似文献   

20.
Using the method of column chromatography the content of adenyl nucleoptides in the muscle and liver homogentates was determined in the rats subjected to short-lasting, intensive physical exercise. Following the exercise a slight increase in AMP and a decrease in ATP levels were found in the liver. In the muscles the levels of AMP and ADP increased while the level of ATP decreased markedly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号