首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Molecules mimicking Smad1 interacting with Hox stimulate bone formation   总被引:2,自引:0,他引:2  
Liu Z  Shi W  Ji X  Sun C  Jee WS  Wu Y  Mao Z  Nagy TR  Li Q  Cao X 《The Journal of biological chemistry》2004,279(12):11313-11319
Bone morphogenetic proteins (BMPs) induce osteoblast differentiation and bone formation. Smads, a group of functionally and structurally related intracellular effectors, mediate signaling initiated by BMPs and regulate cell definite commitment. Previously, we showed that Smad1 activates osteopontin and osteoprotegerin gene expression by dislodging Hoxc-8 from its DNA binding sites. A domain of Smad1, termed Smad1C, was characterized as interacting with Hoxc-8 and then crippling its DNA-binding ability. Ectopic expression of Smad1C is able to bypass BMP signaling in the induction of osteoblast differentiation and bone formation in vitro. To test the function of Smad1C on osteogenesis in vivo, we generated transgenic mice in which Smad1C expression was induced with doxycycline and localized in bone by using a tetracycline-inducible expression system (Tet-on) modified with a bone-specific gene promoter, type I collagen alpha1. The mice expressing Smad1C showed increased skeletal bone mineral density compared with their littermates. Bone histomorphometric analysis of mouse tibiae showed that Smad1C significantly increases trabecular bone area and length of trabecular surface covered with osteoid and up-regulates bone marker gene (OPN, Cbfa1, Col I alpha1, BSP, ALP) expression in vivo. Moreover, stromal cells isolated from mice expressing Smad1C displayed a higher potential for differentiating into osteoblasts than the other mice. These results indicate that Smad1C mimics BMPs in the induction of osteogenesis in vivo. Most important, using a high throughput screening assay based on mimicking Smad1C's displacement of Hoxc-8 binding to DNA, we identified chemical entities that exhibit bone anabolic activity in cell and bone organ cultures, suggesting the possibility that the compounds may be used as bone anabolic agents to treat bone pathologies.  相似文献   

2.
3.
4.
5.
6.
Galectin-9 is a β-galactoside-binding lectin expressed in various tissues. It binds various glycoconjugates and modulates a variety of biological functions in various cell types. Although galectin-9 is expressed in bone, its function in human osteoblasts remains unclear. We demonstrate that galectin-9 induces osteoblast differentiation through the CD44/Smad signaling pathway in the absence of bone morphogenetic proteins (BMPs). Galectin-9 increases alkaline phosphatase activities in human osteoblasts and induces the phosphorylation of Smad1/5/8 and translocation of Smad4 to the nucleus in the absence of BMPs. Galectin-9 also induces binding of Smad4 to the Id1 promoter and increases its activity. Anti-CD44 antibody inhibits Smad1/5/8 phosphorylation by galectin-9. Galectin-9 binds to CD44 and induces the formation of a CD44/BMP receptor complex. Because Smad1 is phosphorylated by BMP receptors, we propose that formation of the CD44/BMP receptor complex induced by galectin-9 may provide a trigger for the activation of Smads.  相似文献   

7.
Gremlin is a glycoprotein that binds bone morphogenetic proteins (BMPs) 2, 4, and 7, antagonizing their actions. Gremlin opposes BMP effects on osteoblastic differentiation and function in vitro and in vivo, and its overexpression causes osteopenia. To define the function of gremlin in the skeleton, we generated gremlin 1 (grem1) conditional null mice by mating mice where grem1 was flanked by lox(P) sequences with mice expressing the Cre recombinase under the control of the osteocalcin promoter. grem1 null male mice displayed increased trabecular bone volume due to enhanced osteoblastic activity, because mineral apposition and bone formation rates were increased. Osteoblast number and bone resorption were not altered. Marrow stromal cells from grem1 conditional null mice expressed higher levels of alkaline phosphatase activity. Gremlin down-regulation by RNA interference in ST-2 stromal and MC3T3 osteoblastic cells increased the BMP-2 stimulatory effect on alkaline phosphatase activity, on Smad 1/5/8 phosphorylation, and on the transactivation of the BMP/Smad reporter construct 12xSBE-Oc-pGL3. Gremlin down-regulation also enhanced osteocalcin and Runx-2 expression, Wnt 3a signaling, and activity in ST-2 cells. In conclusion, deletion of grem1 in the bone microenvironment results in sensitization of BMP signaling and activity and enhanced bone formation in vivo.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Bone morphogenetic proteins (BMPs) regulate many processes in the embryo, including cell type specification, patterning, apoptosis, and epithelial-mesenchymal interaction. They also act in soft and hard tissues in adult life. Their signals are transduced from the plasma membrane to the nucleus through a limited number of Smad proteins. The list of Smad-interacting proteins is however growing and it is clear that these partners determine the outcome of the signal. We summarize the present status in BMP/Smad signaling, with emphasis on recently identified Smad partners and how these proteins may cooperate in the regulation of the expression of BMP target genes.  相似文献   

15.
The osteogenesis of bone marrow stromal cells (BMSCs) is of paramount importance for the repair of large‐size bone defects, which may be compromised by the dietary‐accumulated all‐trans retinoic acid (ATRA). We have shown that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) could induce bone regeneration in a significantly higher dose‐efficiency in comparison with homodimeric BMPs. In this study, we evaluated the effects of ATRA and BMP2/7 on the proliferation, differentiation, mineralization and osteogenic genes. ATRA and BMP2/7 exhibited both antagonistic and synergistic effects on the osteogenesis of BMSCs. ATRA significantly inhibited proliferation and expression of osteocalcin but enhanced the activity of alkaline phosphatase of BMSCs. On day 21, 50 ng/mL BMP2/7 could antagonize the inhibitive effects of ATRA and significantly enhance osteogenesis of BMSCs. These findings suggested a promising application potential of heterodimeric BMP2/7 in clinic to promote bone regeneration for the cases with dietary accumulated ATRA.  相似文献   

16.
17.
The biological effects of type I serine/threonine kinase receptors and Smad proteins were examined using an adenovirus-based vector system. Constitutively active forms of bone morphogenetic protein (BMP) type I receptors (BMPR-IA and BMPR-IB; BMPR-I group) and those of activin receptor-like kinase (ALK)-1 and ALK-2 (ALK-1 group) induced alkaline phosphatase activity in C2C12 cells. Receptor-regulated Smads (R-Smads) that act in the BMP pathways, such as Smad1 and Smad5, also induced the alkaline phosphatase activity in C2C12 cells. BMP-6 dramatically enhanced alkaline phosphatase activity induced by Smad1 or Smad5, probably because of the nuclear translocation of R-Smads triggered by the ligand. Inhibitory Smads, i.e., Smad6 and Smad7, repressed the alkaline phosphatase activity induced by BMP-6 or the type I receptors. Chondrogenic differentiation of ATDC5 cells was induced by the receptors of the BMPR-I group but not by those of the ALK-1 group. However, kinase-inactive forms of the receptors of the ALK-1 and BMPR-I groups blocked chondrogenic differentiation. Although R-Smads failed to induce cartilage nodule formation, inhibitory Smads blocked it. Osteoblast differentiation induced by BMPs is thus mediated mainly via the Smad-signaling pathway, whereas chondrogenic differentiation may be transmitted by Smad-dependent and independent pathways.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号