首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationships between phytochrome and endogenous hormones in the light-mediated control of seed dormancy are discussed. It is concluded that gibberellins are primarily involved in post-dormancy metabolic processes leading to embryo growth and radicle emergence, such as food reserve mobilisation and endosperm softening. Evidence is considered that germination inhibitors, particularly abscisic acid, are involved in the establishment and maintenance of primary dormancy. The role of cytokinins not fully elucidated but there is considerable evidence to suggest that phytochrome control may involve cytokinin effects on transmembrane ion fluxes. In terms of hormonal control, phytochrome mediated dormancy is a complex phenomenon. There is a need for molecular studies of processes controlled by phytochrome, GAs, CKs and ABA during dormancy and germination to unravel the complexities of the dormancy mechanisms. Such studies would be facilitated by the availability of CK-deficient mutants of classical light-sensitive species.  相似文献   

2.

Background and Aims

The duration of the plant life cycle is an important attribute that determines fitness and coexistence of weeds in arable fields. It depends on the timing of two key life-history traits: time from seed dispersal to germination and time from germination to flowering. These traits are components of the time to reproduction. Dormancy results in reduced and delayed germination, thus increasing time to reproduction. Genotypes in the arable seedbank predominantly have short time to flowering. Synergy between reduced seed dormancy and reduced flowering time would create stronger contrasts between genotypes, offering greater adaptation in-field. Therefore, we studied differences in seed dormancy between in-field flowering time genotypes of shepherd''s purse.

Methods

Genotypes with early, intermediate or late flowering time were grown in a glasshouse to provide seed stock for germination tests. Secondary dormancy was assessed by comparing germination before and after dark-incubation. Dormancy was characterized separately for seed myxospermy heteromorphs, observed in each genotype. Seed carbon and nitrogen content and seed mass were determined as indicators of seed filling and resource partitioning associated with dormancy.

Key Results

Although no differences were observed in primary dormancy, secondary dormancy was weaker among the seeds of early-flowering genotypes. On average, myxospermous seeds showed stronger secondary dormancy than non-myxospermous seeds in all genotypes. Seed filling was similar between the genotypes, but nitrogen partitioning was higher in early-flowering genotypes and in non-myxospermous seeds.

Conclusions

In shepherd''s purse, early flowering and reduced seed dormancy coincide and appear to be linked. The seed heteromorphism contributes to variation in dormancy. Three functional groups of seed dormancy were identified, varying in dormancy depth and nitrate response. One of these groups (FG-III) was distinct for early-flowering genotypes. The weaker secondary dormancy of early-flowering genotypes confers a selective advantage in arable fields.  相似文献   

3.
Polyamines (PAs) belong to plant growth regulators and in complex with classical phytohormones take part in regulation of seed dormancy and germination. Although the impact of reactive oxygen (ROS) and nitrogen (RNS) species on seed germination is well described, the cross talk of PAs with ROS/RNS has never been analyzed. Due to the close connection of PAs and ethylene biosynthetic pathways to arginine (Arg)-dependent NO biosynthesis we investigated production of nitric oxide (NO), peroxynitrite (ONOO?) and the level of O 2 ?? or H2O2 in apple embryos, germination of which was PA regulated. PAs: putrescine (Put) and spermidine (Spd) in contrast to spermine (Spm) stimulated germination of apple embryos. Among amino acids, stimulation of germination was observed in Arg and ornithine (Orn) only. Dormancy removal of embryos by PAs was associated with increased accumulation of H2O2 and O 2 ?? in embryonic axes. At the same stage of completion of sensu stricto germination the stimulatory effect of PAs (Put and Spd) and amino acids, mainly Arg and Orn, was accompanied by enhanced NO and ONOO? production in embryonic axis. The beneficial effect of PAs (Put and Spd) and their precursors on germination of apple embryos was removed by NO scavenging, suggesting a crucial role of NO in termination of embryo germination and radicle growth. Moreover, activity of polyamine oxidase in embryo axes was greatly enhanced by embryo fumigation with NO. Our data demonstrate the interplay of RNS/ROS with PAs and point to NO action as an integrator of endogenous signals activating germination.  相似文献   

4.

Background  

Seed dormancy is controlled by the physiological or structural properties of a seed and the external conditions. It is induced as part of the genetic program of seed development and maturation. Seeds with deep physiological embryo dormancy can be stimulated to germinate by a variety of treatments including cold stratification. Hormonal imbalance between germination inhibitors (e.g. abscisic acid) and growth promoters (e.g. gibberellins) is the main cause of seed dormancy breaking. Differences in the status of hormones would affect expression of genes required for germination. Proteomics offers the opportunity to examine simultaneous changes and to classify temporal patterns of protein accumulation occurring during seed dormancy breaking and germination. Analysis of the functions of the identified proteins and the related metabolic pathways, in conjunction with the plant hormones implicated in seed dormancy breaking, would expand our knowledge about this process.  相似文献   

5.
种子萌发是子代植株建立、生长和繁育的重要阶段,在种子植物生命周期中起重要作用。种子休眠是在发育过程中形成的,在生理成熟期达到峰值。种子休眠与萌发的植物激素调控可能是种子植物中一种高度保守的机制。细胞分裂素(CK)是植物体内的一种重要信号分子,调控植物生长发育的许多方面。生物活性CK的水平由其生物合成、活化、失活、再活化...  相似文献   

6.
Auxins (NAA, IAA) inhibited the seed germination of lettuce cv. Cabbage. The auxin-indueed inhibition of seed germination could be overcome if 2-chlorethanephosphonic acid (CEPA, ethrel) or kinetin was added simultaneously. Thus ethylene can also modulate the action of endogenous inhibitors in seed germination.  相似文献   

7.

Background and Aims

Lomatium dissectum (Apiaceae) is a perennial, herbaceous plant of wide distribution in Western North America. At the time of dispersal, L. dissectum seeds are dormant and have under-developed embryos. The aims of this work were to determine the requirements for dormancy break and germination, to characterize the type of seed dormancy, and to determine the effect of dehydration after embryo growth on seed viability and secondary dormancy.

Methods

The temperature requirements for embryo growth and germination were investigated under growth chamber and field conditions. The effect of GA3 on embryo growth was also analysed to determine the specific type of seed dormancy. The effect of dehydration on seed viability and induction of secondary dormancy were tested in seeds where embryos had elongated about 4-fold their initial length. Most experiments examining the nature of seed dormancy were conducted with seeds collected at one site in two different years. To characterize the degree of variation in dormancy-breaking requirements among seed populations, the stratification requirements of seeds collected at eight different sites were compared.

Key Results

Embryo growth prior to and during germination occurred at temperatures between 3 and 6 °C and was negligible at stratification temperatures of 0·5 and 9·1 °C. Seeds buried in the field and exposed to natural winter conditions showed similar trends. Interruption of the cold stratification period by 8 weeks of dehydration decreased seed viability by about 30 % and induced secondary dormancy in the remaining viable seeds. Comparison of the cold stratification requirements of different seed populations indicates that seeds collected from moist habitats have longer cold stratification requirements that those from semiarid environments.

Conclusions

Seeds of L. dissectum have deep complex morphophysiological dormancy. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter.Key words: Apiaceae, cold stratification, Lomatium dissectum, morphophysiological dormancy, secondary dormancy, seed germination  相似文献   

8.
Seed of Molucella laevis (L.) was gathered in the years 1963-66 and germinated soon after harvest and at various intervals subsequently. All seeds showed dormancy on gathering. There was a noticeable fluctuation in the percentage of seeds germinating during storage. Dormancy persisted throughout the years of the experiment. It appears that a number of factors are operative in the inhibition of germination of M. laevis seeds. One factor is an inhibitor which may be adsorbed by active charcoal or heavy loam, involving some process which requires fluctuating temperature. Rupture of the seed-coat also improved the germination of dormant seed, and a subsequent water rinse for 24 hrs. further increased the percent of germinating seed. Immersion of the seed for 48 hrs. in gibberellic acid (G.A.), 400 ppm, greatly improved germination, but it did not completely overcome dormancy. The maximum effect (93% germinating seed) was obtained when seed pre-treated with G.A. was germinated on top of active charcoal. The optimal germination temperature was found to be a daily alternating one of 16 hrs. at 15°C and 8 hrs. at 30°C with light supplied at the latter temperature. Treated seed was sown in the screen house and found to develop normal plants and seed. The dormancy-breaking effect of G.A. lasts for at least 180 days. The fluctuations in germination of seed pre-treated with gibberellin were similar to those of the untreated ones. The effect of dormancy-breaking factors differed with year of gathering and date of application. Thus, M. laevis seeds display much heterogeneity in their germination potential.  相似文献   

9.
Over the past decades many studies have aimed at elucidating the regulation of seed dormancy and germination. Many hypotheses have been proposed and rejected but the regulatory principle behind changes in dormancy and induction of germination is still a black box. The majority of proposed mechanisms have a role for certain plant hormones in common. Abscisic acid and the gibberellins are the hormones most frequently suggested to control these processes. The development of hormone-deficient mutants made it possible to provide direct evidence for the involvement of hormones in germination and dormancy related processes.In the present paper an attempt is made to assess the role of abscisic acid and gibberellins in the transitions between dormant and non-dormant states and germination. First a conceptual framework is presented in which the different states of dormancy and germination are defined in order to contribute to a solution of the semantic confusion about these terms that has existed since the beginning of seed physiology.It is concluded that abscisic acid plays a pivotal role during the development of primary dormancy and gibberellins are involved in the induction of germination. Changes in sensitivity to these hormones occur during changes in dormancy. Both synthesis of and responsiveness to the hormones are controlled by natural environmental factors such as light, temperature and nitrate.  相似文献   

10.
Fluctuating temperature plays a critical role in determining the timing of seed germination in many plant species. However, the physiological and biochemical mechanisms underlying such a response have been paid little attention. The present study investigated the effect of plant growth regulators and cold stratification in regulating Leymus chinensis seed germination and dormancy response to temperature. Results showed that seed germination was less than 2 % at all constant temperatures while fluctuating temperature significantly increased germination percentage. The highest germination was 71 % at 20/30 °C. Removal of the embryo enclosing material of L. chinensis seed germinated to 74 %, and replaced the requirement for fluctuating temperature to germinate, by increasing embryo growth potential. Applications of GA4+7 significantly increased seed germination at constant temperature. Also, inhibition of GA biosynthesis significantly decreased seed germination at fluctuating temperatures depending upon paclobutrazol concentration. This implied GA was necessary for non-dormant seed germination and played an important role in regulating seed germination response to temperature. Inhibition of ABA biosynthesis during imbibition completely released seed dormancy at 20/30 °C, but showed no effect on seed germination at constant temperature, suggesting ABA biosynthesis was important for seed dormancy maintenance but may not involve in seed germination response to temperature. Cold stratification with water or GA3 induced seed into secondary dormancy, but this effect was reversed by exogenous FL, suggesting ABA biosynthesis during cold stratification was involved in secondary dormancy. Also, cold stratification with FL entirely replaced the requirement of fluctuating temperature for germination with seeds having 73 % germination at constant temperature. This appears to be attributed to inhibition of ABA biosynthesis and an increase of GA biosynthesis during cold stratification, leading to an increased embryo growth potential. We suggest that fluctuating temperature promotes seed germination by increasing embryo growth potential, mainly attributed to GA biosynthesis during imbibitions. ABA is important for seed dormancy maintenance and induction but showed less effect on non-dormant seed germination response to temperature.  相似文献   

11.
12.
曼陀罗种子休眠机理与破眠方法研究   总被引:6,自引:0,他引:6  
通过对曼陀罗种子生活力测定、发芽试验、吸水率测定及种子萌发抑制物研究,揭示曼陀罗种子休眠机理,并利用物理、化学法处理曼陀罗种子,以探寻打破曼陀罗种子休眠的最佳方法.结果表明:(1)新采收的曼陀罗种子为综合休眠,休眠原因包括:种皮障碍、缺少萌发所需激素以及种皮和种仁中存在萌发抑制物,其中种皮障碍是限制种子萌发的首要因素.(2)室温存储6个月可解除曼陀罗种子种仁的休眠,但种皮障碍始终是其种子萌发的限制因素.(3)机械摩擦、浓H2SO4处理和NaOH处理均可打破除曼陀罗种皮的休眠障碍,促进种子萌发,其中用10% NaOH处理90 min为破除曼陀罗种皮休眠障碍的最佳方法,且发芽率比对照提高了83%.  相似文献   

13.
It is generally believed that seed dormancy release is terminated by germination and that this process is controlled by phytohormones. Most attention was paid to gibberellins (GAs) because treatment with GAs is most frequently applied for seed dormancy breaking. The review characterizes the hormonal regulation of seed dormancy and its release, as exemplified by arabidopsis seeds possessing non-deep physiological dormancy. Dormancy release occurs under the influence of low temperature and/or illumination with red light. Two main trends are typical of this process: (1) a decrease in ABA content and blocking of signal transduction from ABA, and (2) GA synthesis and activation of GA signaling pathway. Dormancy release ends with the GA-induced syntheses of some proteins, enzymes in particular, required for the start of germination. Quiescent seeds are capable of realizing the germination program without hormonal induction, due to nothing but seed hydration. In imbibing seeds, the triggering role of water lies in the successive activation of basic metabolic systems after attaining the water content thresholds characteristic of these systems and in preparing cells of embryo axial organs for germination. Thus, seed dormancy release is controlled by phytohormones, whereas subsequent germination manifesting itself as the initiation of cell elongation in embryo axes is controlled by water inflow.  相似文献   

14.
Role of Abscisic Acid in Seed Dormancy   总被引:17,自引:0,他引:17  
Seed dormancy is an adaptive trait that improves survival of the next generation by optimizing the distribution of germination over time. The agricultural and forest industries rely on seeds that exhibit high rates of germination and vigorous, synchronous growth after germination; hence dormancy is sometimes considered an undesirable trait. The forest industry encounters problems with the pronounced dormancy of some conifer seeds, a feature that can lead to non-uniform germination and poor seedling vigor. In cereal crops, an optimum balance is most sought after; some dormancy at harvest is favored because it prevents germination of the physiologically mature grain in the head prior to harvest (that is, preharvest sprouting), a phenomenon that leads to considerable damage to grain quality and is especially prominent in cool moist environments. The sesquiterpene abscisic acid (ABA) regulates key events during seed formation, such as the deposition of storage reserves, prevention of precocious germination, acquisition of desiccation tolerance, and induction of primary dormancy. Its regulatory role is achieved in part by cross-talk with other hormones and their associated signaling networks, via mechanisms that are largely unknown. Quantitative genetics and functional genomics approaches will contribute to the elucidation of genes and proteins that control seed dormancy and germination, including components of the ABA signal transduction pathway. Dynamic changes in ABA biosynthesis and catabolism elicit hormone-signaling changes that affect downstream gene expression and thereby regulate critical checkpoints at the transitions from dormancy to germination and from germination to growth. Some of the recent developments in these areas are discussed.  相似文献   

15.
The increase of seed size is of great interest in Medicago spp., to improve germination, seedling vigour and, consequently, early forage yield as well as for optimizing seeding techniques and post-seeding management. This study evaluated the effects of the ectopic expression of the AINTEGUMENTA (ANT) cDNA from Arabidopsis thaliana, under the control of the seed-specific USP promoter from Vicia faba, on seed size, germination and seedling growth in barrel medic (Medicago truncatula Gaertn.). All the transgenic T2 barrel medic lines expressing ANT produced seeds significantly larger than those of control plants. Microscopic analysis on transgenic T3 mature seeds revealed that cotyledon storage parenchyma cells were significantly larger and contained larger storage vacuoles than those of the untransformed control. Moreover, the percentage of germination was significantly higher and germination was more rapid in transgenic than in control seeds. Our results indicate that the seed-specific expression of ANT in barrel medic led to larger seeds and improved seed germination, and revealed a regulatory role for ANT in controlling seed size development.  相似文献   

16.
17.
The seed is an important organ in higher plants, it is an important organ for plant survival and species dispersion. The transition between seed dormancy and germination represents a critical stage in the plant life cycle and it is an important ecological and commercial trait. A dynamic balance of synthesis and catabolism of two antagonistic hormones, abscisic acid (ABA) and giberellins (GAs), controls the equilibrium between seed dormancy and germination. Embryonic ABA plays a central role in induction and maintenance of seed dormancy and also inhibits the transition from embryonic to germination growth. Therefore, the ABA metabolism must be highly regulated at both temporal and spatial levels during phase of dessication tolerance. On the other hand, the ABA levels do not depend exclusively on the seeds because sometimes it becomes a strong sink and imports it from the roots and rhizosphere through the xylem and/or phloem. These events are discussed in depth here. Likewise, the role of some recently characterized genes belonging to seeds of woody species and related to ABA signaling are also included. Finally, although four possible ABA receptors have been reported, not much is known about how they mediate ABA signaling transduction. However, new publications seem to show that almost all these receptors lack several properties to consider them as such.Key words: ABA/GA balance, ABA in woody plants, ABA-receptors, biosynthetic ABA mutants, rhizosphere ABA, seed dormancy  相似文献   

18.

Background and aims

Ethylene has been increasingly implicated as a regulatory mechanism in plant germination, growth, and development, and is produced from the sediments of freshwater habitats. In this paper, we analyse the production and origin of ethylene from ephemeral freshwater rock pool sediments, and explore the role of ethylene in regulating seedling emergence from the seed bank.

Methods

The production of ethylene from rock pool sediments subjected to variable moisture content and antibiotic treatments was assessed through gas chromatography, and the role of ethylene in regulating seedling emergence was determined by seedling emergence assays and seed germination experiments.

Results

Biogenic ethylene production from rock pool sediments occurred rapidly (3–6 h) following inundation, with the majority of seedling emergence occurring between 36 and 72 h. Inoculation of sediments with streptomycin and amphotericin B resulted in significantly reduced ethylene production (up to 60 % and 84 % respectively), and completely inhibited seedling emergence. Additionally, the exposure of dormant seeds to ethylene resulted in significantly increased seed germination percentage in five out of six rock pool species.

Conclusions

Biogenic ethylene production may play an important role in regulating seed dormancy and the timing of seedling emergence from the sediment seed bank following inundation events in rock pools and other freshwater aquatic communities.  相似文献   

19.
Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre‐harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed.  相似文献   

20.
魏俊  陆秀君  张晓林  梅梅  黄晓丽 《遗传》2017,39(1):14-21
植物microRNA(miRNA)是一类小分子非编码RNA,对植物的生长发育发挥着重要调控作用。种子发育、休眠与萌发是植物生命进程中的重要阶段。在这一阶段内,种子受各种环境因子及内源激素调控,并且不同植物种子具有不同发育及休眠特性。随着人们对种子发育、休眠及萌发机理的探究,越来越多miRNA被鉴定,它们能够基于植物激素信号传导、抗氧化作用、关键转录因子调控等途径参与种子形态建成、物质代谢及各种胁迫响应。本文主要综述了近年来植物miRNA的形成及调控机理,以及在种子发育、休眠及萌发过程中发挥的调控作用,旨在为今后的研究方向提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号