首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The essential amino acid production for ten crops harvested for forage and fifteen crops harvested for seed was calculated from average crop yields in the United States for the ten-year period of 1953 to 1962. Highest yields per acre of essential amino acids were calculated from forages which could be processed into leaf protein concentrates. Alfalfa produced the highest yield per acre of essential amino acids of the twenty major crops; soybean seed was second. The calculated yields of edible protein and essential amino acids of leaf protein from corn were equal to or greater than the protein from the corn seed and several times that from animals fed the corn grain. At the present time, leaf protein concentrate may not be able to compete in cost with the by-product protein concentrates such as soybean meal, cottonseed meal, peanut meal, linseed meal, or tankage for feeding farm animals. However, further study of the production of leaf protein concentrates should be made to assure protein supplies for those regions where other adequate protein sources are lacking.  相似文献   

2.
Globally, there is an increased demand for sustainable protein sources for animal feed. Grass and forage legumes have the yield potential to become such alternatives, but the protein needs to be separated from the fibres. Red clover, white clover, lucerne and perennial ryegrass were fractionated into a green juice and a fibrous pulp in a screw-press and protein was subsequently precipitated. The nitrogen (N) and amino acid composition of the produced fractions was analysed and the digestibility of dry matter (DM) and N was evaluated using a rat digestibility trial. The aim was to determine the effect of fractionation on composition and digestibility in order to evaluate the four plants as potential protein sources for monogastrics. Protein concentrates with CP concentrations of 240 to 388 g/kg DM and fibrous pulps with CP concentrations of 111 to 216 g/kg DM were produced. The sum of all analysed amino acids was highest in the protein concentrates corresponding to a low concentration of non-protein nitrogen ranging from 4.9% to 10.4%. Only small variations were seen in the amino acid compositions of the different plants and fractions. The concentration of the essential lysine and methionine in the protein concentrate ranged from 6.27 to 6.67 g/16 g N and 1.54 to 2.09 g/16 g N for lysine and methionine, respectively. For all plants species, total tract digestibility of DM and standardised N digestibility was significantly higher in the protein concentrates (60.8% to 76.5% and 75.4% to 85.0% for DM and N, respectively) compared to pulp (21.2% to 43.4% and 52.1% to 72.5% for DM and N, respectively). Digestibility of lucerne protein concentrate (76.5% and 85.0% for DM and N, respectively) was higher than of the unprocessed plant (39.6% and 74.9% for DM and N, respectively), whereas for red and white clover no difference was found. The amino acids methionine and cysteine were limiting for pigs and broilers in all fractions regardless of plant origin, and low scores were also found for lysine. The study demonstrated great potential of using green plants as a protein source for monogastrics because of high protein content, balanced amino acid composition and high digestibility of DM and N. The effects of processing and protein precipitation were pronounced in lucerne where significantly improved digestibility was observed in the protein concentrate. The results from the study provide valuable and enhanced knowledge to the production of alternative and sustainable protein sources for monogastric feed.  相似文献   

3.
Improving containment strategies in biopharming   总被引:2,自引:0,他引:2  
This review examines the challenges of segregating biopharmed crops expressing pharmaceutical or veterinary agents from mainstream crops, particularly those destined for food or feed use. The strategy of using major food crops as production vehicles for the expression of pharmaceutical or veterinary agents is critically analysed in the light of several recent episodes of contamination of the human food chain by non-approved crop varieties. Commercially viable strategies to limit or avoid biopharming intrusion into the human food chain require the more rigorous segregation of food and non-food varieties of the same crop species via a range of either physical or biological methods. Even more secure segregation is possible by the use of non-food crops, non-crop plants or in vitro plant cultures as production platforms for biopharming. Such platforms already under development range from outdoor-grown Nicotiana spp. to glasshouse-grown Arabidopsis , lotus and moss. Amongst the more effective methods for biocontainment are the plastid expression of transgenes, inducible and transient expression systems, and physical containment of plants or cell cultures. In the current atmosphere of heightened concerns over food safety and biosecurity, the future of biopharming may be largely determined by the extent to which the sector is able to maintain public confidence via a more considered approach to containment and security of its plant production systems.  相似文献   

4.
Reduction of noncrop habitats, intensive use of pesticides and high levels of disturbance associated with intensive crop production simplify the farming landscape and bring about a sharp decline of biodiversity. This, in turn, weakens the biological control ecosystem service provided by arthropod natural enemies. Strategic use of flowering plants to enhance plant biodiversity in a well-targeted manner can provide natural enemies with food sources and shelter to improve biological control and reduce dependence on chemical pesticides. This article reviews the nutritional value of various types of plant-derived food for natural enemies, possible adverse effects on pest management, and the practical application of flowering plants in orchards, vegetables and field crops, agricultural systems where most research has taken place. Prospects for more effective use of flowering plants to maximize biological control of insect pests in agroecosystem are good but depend up on selection of optimal plant species based on information on the ecological mechanisms by which natural enemies are selectively favored over pest species.  相似文献   

5.
The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost‐effective option for biochemical conversion to biofuel.  相似文献   

6.
The number of Aphis fabae Scop. per plant and per acre developing on field beans (Vicia faba L.) was inversely related to seeding rate (i.e. plant density) except sometimes at very low rates; with equal numbers of plants per acre, fewer aphids developed on plants in rows 11 in. than 22 in. apart. Plots sown in mid-March with more than about 150,000 plants per acre were more attractive than less dense stands to colonizing alate A. fabae, but established colonies multiplied most on the sparsest and least on the densest plots. The number of plants per acre infected by pea leaf-roll virus was inversely related to planting density. There were more virus-infected plants on II in. than on 22 in. spaced rows-in contrast to the numbers of A. fabae. A single spray with demeton-methyl, timed to control A. fabae, did not significantly decrease virus incidence. Grain yields of sprayed plots were little altered by increasing the seed rate above a critical minimum, except in one year when the densest crops lodged. Increased yields from spraying were closely related to the numbers of A. fabae on unsprayed plots. Dense planting (more than 400,000 plants per acre) prevented or greatly decreased losses caused by A. fabae in unsprayed plots except in one year when the aphids were exceptionally abundant.  相似文献   

7.
8.
Since one decade ago, transgenic crop plants are globally grown; in 2004, it was estimated to cover a total of 81 Mio ha in 17 countries. At present, four plant species (soybean, maize, cotton and rapeseed) dominate with two traits (herbicide tolerance and insect resistance). The traits on which research concentrates and the constructs which might come next onto the market are outlined. The procedure on how to clone such genes of interest, e.g. via map-based cloning, and some other helpful approaches of green biotechnology, like high throughput techniques and functional markers, are summarised, and a rough calculation about the market value of transgenic crops in US dollars is quoted.  相似文献   

9.
The main feedstocks for bioethanol are sugarcane (Saccharum officinarum) and maize (Zea mays), both of which are C(4) grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C(4) plants have high light, water and nitrogen use efficiency, as compared with C(3) species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall.  相似文献   

10.
The ability to produce doubled haploid (DH) plants has found broad application in research and breeding. For major crop species such as maize (Zea mays L.) and barley (Hordeum vulgare L.), routine large-scale production of DHs has enabled the acceleration of breeding processes, for example through efficient generation of homozygous lines. However, in forage crops such as perennial ryegrass (Lolium perenne L.), low and genotype-specific responses to in vitro anther culture (AC) still limit wide-spread use of DHs. Here, we report the responses of nine bi-parental populations, segregating for microspore embryogenesis and plant regeneration capacity, to an effective AC protocol. Genotypes of exceptionally high androgenic ability, producing over 200 green plants per 100 anthers cultured, could be selected. Continuous and distinctly shaped distributions for the evaluated traits were indicative of quantitative polygenic control and the presence of different alleles in each population. An insignificant association of embryo production with plant regeneration, as well as a low correlation between green and albino plant yield (ρ?=?0.20), suggested that different genes influence these traits. The populations evaluated here provide a rich source of alleles needed for the introgression of high levels of androgenic capacity into recalcitrant material. Moreover, this germplasm is ideally suited for use in future genotyping and mapping studies so that the genetic control of androgenic capacity in perennial ryegrass can be elucidated. Ultimately, our results will help to realize the potential of DH induction in one of the world’s most important forage crop species.  相似文献   

11.
The synthesis, transport and assimilation of the ureides, allantoin and allantoic acid, in higher plants is reviewed. Evidence indicates that in nodulated legumes ureides are synthesized from products of N2-fixation via purine synthesis and degradation. Their synthesis in other plants also appears to be via purine degradation but is dependent on the inorganic nitrogen source fed to the plant; greatest ureide production is associated with ammonium assimilation. The use of ureides rather than amides for N-transport from the root to the shoot via the xylem stream results in an improved carbon economy of the plant. Good evidence for the transport of ureides in the phloem is lacking for most species examined although it is assumed to be important, particularly in fruit and seed development. Ureides are stored and assimilated mainly in the shoot. The precise pathways, localization and regulation of ureide assimilation are poorly understood and require further investigation. Similarities exist between the properties of the enzymes involved in ureide assimilation in higher plants and in micro-organisms. However, the evidence that light appears to be involved in ureide assimilation in green tissues suggests that different regulatory mechanisms may exist in plants compared with micro-organisms. The economically important legume crops such as soybeans, cowpeas and Phaseolus sp. are all ureide producers. To aid our understanding of the productivity of these plants knowledge of how ureide-N is converted into seed protein is essential.  相似文献   

12.
Phiri  S.  Barrios  E.  Rao  I.M.  Singh  B.R. 《Plant and Soil》2001,231(2):211-223
Acquisition of soil and fertiliser phosphorus (P) by crops depends on soil and plant properties. Soil processes determining P availability to plants are P solubility/sorption, P transport, root/soil contact and mineralisation/immobilisation. Plants have evolved properties contributing to a more efficient use of plant-available soil P and to mobilise P from less available soil P fractions. Agronomic measures may affect P availability to crops through the modification of soil properties or through direct quantitative and qualitative crop impact on soil P dynamics. Among the agronomic measures, the application of organic matter such as green manure and crop residues to maintain or increase soil organic matter content and to enhance soil biological activity, and the incorporation into the cropping system of P-mobilising plant species are particularly beneficial.Our experimental activities have concentrated on the characterisation of the P mobilising capacity of different leguminous grain and cover crops, and their effect on P availability to less P-efficient cereals grown in mixed culture and in rotation. Fractionation of P in the rhizosphere soil revealed the capacity of some legumes to better use P from sparingly soluble soil P fractions than maize. Field experiments conducted on 2 sites in the Northern Guinea Savannah of Nigeria and accompanying green-house pot experiments revealed a positive rotational effect of P-efficient cover crops on maize growth and grain yield with and without the return of crop residues. This could unequivocally be attributed to a better P supply to maize, especially on strongly P-fixing soil. However, the residual effect was small compared to the application of water-soluble P fertiliser. This clearly indicates the need for a maintenance application of fertiliser P in addition to the agronomic measures for sustainable crop production.  相似文献   

13.
重组蛋白为疾病治疗提供了新手段,同时创造了可观的经济效益。利用经济作物(主要是烟草)、谷类作物、豆科作物和蔬菜作物生产具有药用价值的重组蛋白是“分子农业”最热门的研究内容。尽管许多重组蛋白已在植物中表达,但只有一小部分已成功投入使用。为了极大地克服限制植物生产重组蛋白发展的问题,研究人员改进表达系统以增加重组蛋白的产量。本文从分析植物产生重组蛋白产量低和/或生物活性低等问题入手,综述了近些年来解决这些问题的优化策略,同时提出了提高植物生产重组蛋白产量的研究方向。  相似文献   

14.
Replacing fossil fuels with an economically viable green alternative at scale has proved most challenging in the aviation sector. Recently sugarcane, the most productive crop on the planet, has been engineered to accumulate lipids. This opens the way for production of far more industrial vegetable oil per acre than previously possible. This study performs techno‐economic feasibility analysis of jet fuel production from this new cost efficient and high yield feedstock. A comprehensive process model for biorefinery producing hydrotreated jet fuel (from lipids) and ethanol (from sugars), with 1 600 000 MT yr?1 lipid‐cane processing capacity, was developed in SuperPro Designer. Considering lipid‐cane development is continuing for higher oil concentrations, analysis was performed with lipid‐cane containing 5%, 10%, 15%, and 20% lipids. Capital investments for the biorefinery ranged from 238.1 to 351.2 million USD, with jet fuel capacities of 12.6–50.5 million liters (correspondingly ethanol production of nil to 102.6 million liters). The production cost of jet fuel for different scenarios was estimated Replacing fossil fuels with an economically viable green alternative at scale has proved most challenging in the aviation sector. Recently sugarcane, the most productive crop on the planet, has been engineered to accumulate lipids. This opens the way for production of far more industrial vegetable oil per acre than previously possible. This study performs techno‐economic feasibility analysis of jet fuel production from this new cost efficient and high yield feedstock. A comprehensive process model for biorefinery producing hydrotreated jet fuel (from lipids) and ethanol (from sugars), with 1 600 000 MT yr?1 lipid‐cane processing capacity, was developed in SuperPro Designer. Considering lipid‐cane development is continuing for higher oil concentrations, analysis was performed with lipid‐cane containing 5%, 10%, 15%, and 20% lipids. Capital investments for the biorefinery ranged from 238.1 to 351.2 million USD, with jet fuel capacities of 12.6–50.5 million liters (correspondingly ethanol production of nil to 102.6 million liters). The production cost of jet fuel for different scenarios was estimated $0.73 to $1.79 per liter ($2.74 to $6.76 per gal) of jet fuel. In all cases, the cost of raw materials accounted for more than 70% of total operational cost. Biorefinery was observed self‐sustainable for steam and electricity requirement, because of in‐house steam and electricity generation from burning of bagasse. Minimum fuel selling prices with a 10% discount rate for 20% lipid case was estimated $1.40/L ($5.31/gal), which was lower than most of the reported prices of renewable jet fuel produced from other oil crops and algae. Along with lower production costs, lipid‐cane could produce as high as 16 times the jet fuel (6307 L ha?1) per unit land than that of other oil crops and do so using low‐value land unsuited to most other crops, while being highly water and nitrogen use efficient.  相似文献   

15.
The amount of protein produced per m2 by plants cultivated in soil in a greenhouse at three levels of fertilizer application, for c . 10 weeks, was estimated by Kjeldahl analysis of the TCA-insoluble fraction of freeze-dried material. The quantity of protein extractable for production of leaf protein concentrates was determined by Kjeldahl analysis of non-dried but frozen material after disintegration with a meat mincer and an Ultra-Turrax homogenizer, hydraulic pressing and filtration, and protein precipitation by heat (in two steps) or by TCA. The precipitability was also studied by Folin-Ciocalteu determination of protein. The quality of each protein concentrate was studied by determining nitrogen content (Kjeldahl), digestibility by pepsin and by pepsin + pancreatin, nutritive value in Tetrahymena tests, and lysine and methionine content (analysed microbiologically). Twenty-nine species and varieties were investigated. Large differences between species were found in all the properties studied. Protein extractability varied between 5 and 80%, while the extractable protein produced per m2 ranged between 1 and 140 g. The highest digestibility was two to three times greater than the lowest one. In the most digestible species ( Amaranthus caudatus ), 82% of the N of the chloroplastic protein concentrate was digested by pepsin + pancreatin. The Tetrahymena value generally ranged between 40 and 98, whereas casein gave values of about 75. The lysine content always exceeded the FAO minimum. The methionine content of most species varied between 2.0 and 2.2% of the hydrolyzed protein.
Amaranthus caudatus and the Chenopodiaceae investigated were the most suitable species for large-scale production of leaf protein concentrates for human consumption because they gave high yield of extractable protein and high-quality protein concentrates.  相似文献   

16.
The economy of the production of lignocellulosic ethanol could be supported by the simultaneous use of different components of the biomass other than sugars. Among these, protein is present at high concentration in leaves and is a candidate for different possible utilizations. Among dietary applications, plant protein may be used as animal feed and possibly extended to human consumption, in close similarity to leaf protein concentrates already proposed in the past. This would be especially beneficial for developing countries. For this aim, protein quality plays a crucial role: separating only the noble fraction of protein in biomass and preserving its nutritional value, while simultaneously obtaining good yields and limiting drawbacks on other steps of the production chain is particularly challenging from a technical viewpoint. In this review, we compare the possible extraction of protein from dry biomass with the more commonly studied situation in which freshly harvested material is used, with special focus on dietary implications.  相似文献   

17.
The weevil Nastus fausti Reitter (Coleoptera, Curculionidae) was evaluated for its potential in the biological control of invasive giant hogweeds (Heracleum spp.). Quantitative sampling suggested that at a high population density (more that 3–4 mature larvae per plant) damage by N. fausti larvae could have some negative impact on the above-ground part of the plant. However, no-choice laboratory tests showed that N. fausti females were able to feed on a number of Apiaceae genera, including such important cultivated crops as carrot, parsnip, and celeriac. Feeding on these plants did not cause any significant decrease in female survival or fecundity. Moreover, at least part of N. fausti larvae may feed and develop on roots of these plants, and the rate of their growth and development does not differ significantly from that in larvae fed on roots of H. mantegazzianum. N. fausti adult and larval feeding on Angelica purpurascens, representative of related genus of the same tribe, was recorded under natural conditions, too. In combination, these data suggest that N. fausti is an oligophagous species connected with plants from at least several genera of Apiaceae and thus it cannot be considered a potential agent for biological control of invasive Heracleum species.  相似文献   

18.
The growth of tree lupins was investigated in two experiments. In the first, two ages of plant, 4-wk-old seedlings and 1-year-old plants, were transplanted into a ryegrass sward in an upland environment. Growth, in terms of leaf production, branching and stem elongation, was measured over two successive growing seasons. Plant dry matter and nutrient contents were determined at the beginning and end of each growing season. In the first summer, the rate of production of new leaves on the main stem of seedling plants averaged 1.8 leaves per wk and main stem length increased from 5 to 67 cm. On older plants, where floral apices had been initiated on main and primary stems, there was a 3–10 fold increase in secondary branch length. In the second season, there was no effect of plant age on rates of leaf appearance or stem extension; dry matter production was higher than in the first season. In the second experiment, the effect of removal of 0%, 50% or 100% of fully expanded leaves on the subsequent growth of 23-wk-old plants was investigated. During the 7-wk growth period, defoliation promoted the rate of production of mature leaves, and area and dry weight of new laminae were slightly higher in defoliated plants. Defoliation did not affect the concentrations of N, P or K in the new laminae, but P and K concentrations in petioles of defoliated plants were significantly higher than those in intact plants. The results from the experiments are discussed in relation to the potential use of tree lupins as nurse species and biomass crops in hill and upland environments of the UK.  相似文献   

19.
Increasingly more studies are raising concerns about the increasing consumption of meat and the increasing amount of crops (cereals and oilseeds in particular) used to feed animals and that could be used to feed people. The evolution of this amount is very sensitive to human diets and to the productivity of feed. This article provides a 2050 foresight on the necessary increase in crop production for food and feed in three contrasting scenarios: diets with no animal products; current diets in each main region of the world; and the average diet of developed countries extended to the whole world. We develop empirical aggregate production models for seven world regions, using 43 years and 150 countries. These models realistically account for the contribution of feed from food plants (i.e. plants that would be edible for humans) and of grassland to animal products. We find that the amount of edible crops necessary to feed livestock in 2050 is between 8% and 117% of today's need. The latter figure is lower than that in comparable foresight studies because our models take into account empirical features occurring at an aggregate level, such as the increasing share of animal production from regions using less crop product per unit of animal product. In particular, the expected increase in animal production is estimated to occur mostly in Sub-Saharan Africa and Asia, where the amount of feed from food crops required per unit of animal product proves to be lower than that in other areas. This 117% increase indicates that crop production would have to double if the whole world adopted the present diet of developed countries.  相似文献   

20.
High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号