首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An efficient protocol of callus induction, plant regeneration and long-term maintenance of embryogenic cultures for manilagrass was developed. Callus induction and embryogenic callus formation were influenced by cytokinins and nodal positions. Murashige and Skoog (MS) medium with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D), 0.02 mg l−1 kinetin (KT) or 6-benzyladenine (BA) gave the highest frequency for both callus induction and embryogenic callus formation compared with 0.02 mg l−1 thidiazuron (TDZ) or N6-(2-isopenteny) adenine (2iP). The frequency of callus induction of different nodes (from the first to the sixth node) varied from 22.5 to 92.1%, and the embryogenic callus formation frequencies ranged from 13.3 to 25.7%. The highest frequencies of callus induction and embryogenic callus formation (92.1 and 25.7%, respectively) were observed in the fourth node group. During subculture on callus induction and maintenance medium, somatic embryos formed on the surface of the embryogenic callus. On regeneration medium, the regeneration rates of embryogenic callus varied from 96.8 to 100% during the 4-year period of subculture. The results also indicate that preservation of manilagrass callus is stable at low-temperature (4°C) over a period of 11 months. No significant differences were found in the activities of superoxide dismutase (SOD), peroxidase (POD) and proline content of the plants regenerated from the 4-year subcultured callus on different regeneration media.  相似文献   

2.
The callus formed in Rosmarinus officinalis L in association with shoot tip proliferation was isolated and subjected to different treatments for good growth. Two basal media, namely, Murashige and Skoog (MS) and Schenk and Hildebrdndt (SH) and their modifications supplemented with 0.25 mg I-1 6-benzylaminopurine (BAP), 0.5 mg I-1 indole-3-acetic acid (IAA) and 1.0 mg I-1 2,4-dichlorophenoxyacetic acid (2,4-D) were used. Callus in MS medium, was compact and remained fresh and green upto 30 days but grew slowly. Whereas, in SH medium callus growth was rapid but it turned brown within 15 days.The browning of callus could be checked with the addition of 1500 mg I-1 NH,NO, to the medium, in which callus grew 15 fold in fresh weight during 21 days and remained fresh upto 45 days of incubation.The shoot buds differentiated in this somatic callus with the addition of 0.5 mg I-1 each of BAP, 2-isopentenyl adenine (2ip), IAA and 10 mg I-1 gibberellic acid (GA3), within 15 days of incubation provided the callus remained floating on the liquid medium. Histological investigations revealed both peripheral and occasionally internal differentiation of shoot buds. Differentiated shoot buds were proliferated, rooted and transplanted in the soil.  相似文献   

3.
A comparison of the hydrogen peroxide (H2O2) content, proline and betacyanin concentration and activities of some antioxidant enzymes (catalase, superoxide dismutase, guaiacol and ascorbate peroxidases) was made in Mesembryanthemum crystallinum L. calli differing in rhizogenic potential. Callus was induced from hypocotyls of 10-day-old seedlings on a medium containing 1?mg?l?1 2,4-dichlorophenoxyacetic acid and 0.2?mg?l?1 kinetin, which was either supplemented with 40?mM NaCl (CIM-NaCl medium) or did not contain any salt (CIM medium). The callus obtained on CIM-NaCl was rhizogenic, whereas the callus induced on the medium without salt was non-rhizogenic throughout the culture. The rhizogenic callus differed from the non-rhizogenic callus in lower betacyanin and H2O2 content, but the rhizogenic callus displayed a higher proline level. The activity of H2O2 scavenging enzymes, such as catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (POD), was markedly higher in the rhizogenic callus than in the non-rhizogenic callus, but the total activity of superoxide dismutase (SOD) was higher in the non-rhizogenic callus than in the rhizogenic callus. Aminotriazole (CAT inhibitor) and diethyldithiocarbamate (SOD inhibitor) were added solely to the CIM and CIM-NaCl media to manipulate the concentration of reactive oxygen species (ROS) in the cultured tissues. Both CAT and SOD inhibitors brought about an increase in H2O2 content in calli cultured on CIM-NaCl and the loss of rhizogenic potential. Conversely, the addition of inhibitors to the medium without salt led to a decrease in H2O2 content. This corresponded with a significant decrease in the endogenous concentration of betacyanins, but did not change the lack of rhizogenic ability.  相似文献   

4.
An osmotically (mannitol) tolerant callus line of Vigna radiata (L.) Wilczek has been isolated from callus cultures grown on modified PC-L2 medium supplemented with increasing concentrations of mannitol. The tolerance was stable and retained after growth in the absence of mannitol selection for 2 months. The growth of the tolerant line, in the presence of mannitol (540 mol m-3) was comparable to that of a sensitive callus line growing in the absence of mannitol. This line not only grew well on media containing up to 720 mol m-3 mannitol, but also required 450 mol m-3 mannitol for its optimal growth. Osmotically tolerant callus also showed increased tolerance to NaCl (0–250 mol m-3) stress as compared to sensitive callus. Accumulation of Na+ was lower, and the level of K+ was more stable in osmotically tolerant than in sensitive calli, when both were exposed to salt. The free proline content of both tolerant and sensitive calli increased on media supplemented with mannitol or NaCl. However, the proline content of sensitive callus was higher than in tolerant callus in the presence of same concentrations of mannitol or NaCl.Abbreviations NAA -naphthaleneacetic acid - 2,4-d 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine  相似文献   

5.
S. Jha  S. Sen 《Genetica》1990,80(1):9-15
Bulb scale and inflorescence explants of Urginea indica Kunth. (2n=20) were cultured in vitro on modified Murashige & Skoog's medium with different hormonal composition. Media containing 2,4-dichlorophenoxy-acetic acid (2,4-D) (2 and 4 mgl–1) and -naphthalene-acetic acid (NAA) (2 mgl–1) could induce callus in inflorescence explants. Combination of 2,4-D (4 mgl–1) + NAA (2 mgl–1) + Kinetin (2 mgl–1) only could induce callus formation in scale explants. The bulb scale explants contained mostly diploid cells while the inflorescence explants contained cells with nuclear DNA content ranging from 2C to 64C. The lowest karyological heterogeneity was recorded in callus derived from bulb scale and in callus derived from inflorescence induced with NAA. The highest variability was recorded on media with 2,4-D alone. Induction of division, probably of the pre-existing polytenic nuclei in the inflorescence explant, has been suggested to be the cause of origin of polyploid cells in such cases.  相似文献   

6.
The effect of benzyladenine (BA) on the production of shoot-forming callus from seeds of two Poa pratensis cultivars was studied. Addition of low concentrations (0.1–0.3 mg l-1) of BA to Murashige & Skoog (MS) callus induction medium containing 1 or 2 mg l-1 2,4-dichlorophenoxyacetic acid (2,4-d) stimulated somatic embryogenesis and strongly increased the percentage of seeds producing shoot-forming callus in both cultivars.  相似文献   

7.
朱砂根愈伤组织培养及悬浮细胞系建立   总被引:2,自引:1,他引:1  
以朱砂根(Ardisia crenata Sims.)无菌苗的茎段、叶片、胚轴和胚根为外植体进行愈伤组织诱导研究。结果表明:胚根在含有2,4-D的培养基中的诱导率最高,在添加5 mg L-1 AgNO3的MS+2,4-D 0.5 mg L-1+KT 0.01 mg L-1培养基中继代培养的增殖系数高达8倍以上。培养中获得了5种类型的愈伤组织(I-白色湿软状、Ⅱ-白色冰砂状、Ⅲ-淡黄色颗粒状、Ⅳ-黄绿色块状和V-绿色块状),其中Ⅱ和Ⅲ型愈伤组织可以成功建立悬浮细胞系,用M S+2,4-D 0.5 mg L-1+KT 0.01 mg L-1培养基进行固-液轮回培养,可以较好地保持悬浮细胞系。  相似文献   

8.
Summary Embryogenic callus induction and plant regeneration systems have long been established for creeping bentgrass (Agrostis palustris Huds.), but little research has been reported on optimal medium for embryogenic callus induction and plant regeneration in velvet bentgrass (Agrostis canina L.), colonial bentgrass (Agrostis capillaries L.), and annual bluegrass (Poa annua L.). The present study compared 14 callus induction media and eight regeneration media for their efficacies on embryogenic callus induction and plant regeneration in these four species. The embryogenic callus initiation media contained the Murashige and Skoog inorganic salts and vitamins supplemented with 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-anisic acid and 6-benzyladenine. l-Proline or casein hydrolyzate was included in some media to stimulate embryogenic callus formation and plant regeneration. The frequencies of embryogenic callus formation ranged from 0% to 38% and exhibited medium differences within each of the four species. Callus induction media, plant regeneration media, and genotypes affected plant regeneration rates, which varied between 0% and 100%. The embryogenic callus induced on Murashige and Skoog medium supplemented with 500 mgl−1 casein hydrolyzate, 6.63 mg l−1 (30 μM) 3,6-dichloro-anisic acid and 0.5–2.0 mg l−1 (2–9 μM) 6-benzyladenine had much higher regeneration rates than those formed on other callus induction media. Embryogenic callus of annual bluegrass had higher regeneration rates than those of bentgrass species. MSA2D, a media containing 2 mgl−1 (8 μM) 2,4-dichlorophenoxyacetic acid, 100 mgl−1 myo-inositol, and 150 mgl−1 asparagine, was effective in promoting embryogenic callus formation in creeping bentgrass but not in colonial and velvet bentgrasses and annual bluegrass.  相似文献   

9.
The turf-type bermudagrasses are genetically variable and do not respond uniformly to tissue culture and plant regeneration protocols. We evaluated the callus induction response of two explant types, young inflorescences and nodes, from multiple genotypes including triploid TifSport, TifEagle, and Tift97-4 and tetraploid Tift93-132, Tift93-135, Tift93-156 and Tift93-157 on MS medium supplemented with 1–1.5 mg l−1 2,4-D + 0.01 mg l−1 BA + 1.16 g l−1 proline. Four types of callus were observed. Type I was fluffy, soft, and white non-embryogenic callus, common to all cultures. Type II was globular, transparent, and hard, but sticky callus, which was pre-embryogenic and could be selected for subculture. Type III callus was transparent, compact, and embryogenic. Type IV callus was opaque white and compact. Both Type III and Type IV calluses were embryogenic and regenerative. A combination of gelling agents in the medium (2 g l−1 Gelrite and 5 g l−1 agar) improved callus quality and increased the rate of compact callus formation during subculture. Embryogenesis from compact callus was observed in TifEagle, TifSport and Tift93-132, and shoots were regenerated on MS medium with 0.1 mg l−1 2,4-D + 0.5–4.0 mg l−1 BA. Low intensity light treatment (30 μmol m2 s−1 of cool white fluorescence) to callus before regeneration greatly enhanced regeneration frequency from 6.7% to 40% in recalcitrant TifSport.  相似文献   

10.
The halophyte Leymus chinensis (Trin.) is a perennial rhizome grass (tribe Gramineae) that is widely distributed in China, Mongolia and Siberia, where it is produced as a forage product. In this report, we establish a highly reproducible plant regeneration system through somatic embryogenesis. Two explants, mature seeds and leaf base segments were used; these parts displayed different responses to combinations of growth factors that affect embryogenic callus induction, callus type optimization and plant regeneration. The highest callus induction frequency was obtained on Murashige and Skoog (MS) medium supplemented with 2.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of 5.0 mg l−1 l-glutamic acid. The inclusion of 5.0 mg l−1 l-glutamic acid was found to significantly promote primary callus induction, embryogenic callus formation and callus status improvement. Subculturing on maintenance medium for 1–2 months before plant regeneration was found to be essential for the optimization of callus type and the maturation of embryogenic callus. Callus relative water content and growth rate were simultaneously investigated during callus maintenance, and found to possibly be related to callus type. Shoots were differentiated from the embryogenic callus on the optimal medium with MS salts containing 0.2–0.5 mg l−1 α-naphthalene acetic acid (NAA), 2.0 mg l−1 kinetin (Kn) and 2.0 g l−1 casamino acids in 71.0 and 69.2% of wild-type (WT) and Jisheng No.1 (JS) plants, respectively. Plant regeneration was variable depending on NAA levels, and the addition of casamino acids stimulated the maturation of embryogenic callus and plant regeneration. Transferring callus with shoots onto half-strength MS medium resulted in rooting within 1 week. The growth of regenerated plants was also surveyed in the field. This is the first report of plant regeneration through somatic embryogenesis from mature seeds and leaf base segments of L. chinensis.  相似文献   

11.
Marker proteins for embryogenic differentiation patterns in pea callus   总被引:5,自引:0,他引:5  
Polypeptide pattern alterations during somatic embryogenesis were investigated using callus cultures of two Pisum sativum genotypes. Both genotypes show the formation of two different callus lines from the same explant after six to eight weeks in culture: a nodular yellowish callus line, which forms somatic embryoids in suspension cultures (e+) and a white compact callus line with no regenerative capacity (e). The cytosol proteins of the two different callus lines were separated in a semi-preparative two-dimensional system and the polypeptide patterns were compared. Two protein bands were found (P1: Mr=45000 D, pI=7.0–7.1; P2: Mr=7000 D, pI=<4.5), which were characteristic of the putatively embryogenic (e+) callus line in all tissues investigated (two genotypes × two explant sources). These proteins found in nodular (e+) pea cultures are very similar to two proteins found in Daucus carota suspension cultures preceding the formation of somatic embryos.Abbreviations BA 6-benzyl-aminopurine - Bistris 2-(bis(2-hydroxyethyl)imino)-2-(hydroxymethyl)-1.3-propanediol - PAGE polyacrylamide gel electrophoresis - pI isoelectric point - TCA trichloroacetic acid - Tris tris(hydroxymethyl)-aminomethane  相似文献   

12.
Methods are described for the vegetative propagation of Begonia venosa Skan. Young flower buds are capable of producing callus which, contrasting to callus from leaves of adult plants, is very organogenic. For callus induction are required: BA and NAA at a conc. of 0.5 mgl–1, 21 °C and low irradiance. Subculture of organogenic callus is optimal on a medium with 0.1 mgl–1 BA and 2% glucose, whereas NAA is ommitted. Shoot development from preformed adventitious buds is enhanced by lowering the BA and glucose conc. Optimal rooting of excised shoots is obtained on a medium without regulators and a low glucose level. No visible mutations can be detected in the plant material, even not at the flowering stage.Abbreviations (BA) 6-Benzylaminopurine - (2iP) N6-(2-isopentenyl)adenine - (MS)(1) Murashige and Skoog - (NAA) 1-Naphthaleneacetic acid Publ. 535  相似文献   

13.
The present study was designed to analyze genetically somaclonal variants using biochemical and molecular markers. Efficient tissue culture protocol for Solanum melongena L. cv. Nirrala was developed. Maximum callus induction (100%) was observed for Murashige and Skoog (MS) media supplemented with 2.0 mg L?1 naphthalene acetic acid +0.5 mg L?1 6-benzylaminopurine; and nodal explants gave best callusing response (88.8%) as compared to internodes (88.3%) and leaves (87.7%). The best shooting was induced on nodal and internodal callus in the presence of 2.0 mg L?1 6-benzylaminopurine. Total soluble protein content of callus and regenerated variant plants was estimated for biochemical analysis, and largest amount of soluble protein was found in callus (6.54 mg g?1 fresh tissue) followed by variant plant grown on 2.0 mg L?1 6-benzylaminopurine (5.96 mg g?1 fresh tissue). Random amplification of polymorphic DNA technique was done with five decamer primers (OPC1-OPC5) and maximum polymorphism was detected by OPC 2 (26.99%) among all samples, whereas nodal callus on media containing 1.0 mg L?1 naphthalene acetic acid +1.0 mg L?1 6-benzylaminopurine showed highest polymorphism producing 22 bands, out of which 8 bands were polymorphic. The study shows that this marker system can provide better evaluation of genetic variation induced by tissue culture.  相似文献   

14.
Yinkai Xi  Biao Zeng  Hengyu Huang 《Phyton》2021,90(3):987-1001
An efficient regeneration system of Rhynchostylis retusa was established to provide technical reference for the application of tissue culture tube seedlings in production. The mixtures of callus and protocorm from aseptic germination were used as explants. The optimal media of each stage was selected for callus proliferation, protocorm occurrence and growth, rejuvenation and rooting via a single, complete combination and orthogonal experiment. The results showed that the optimal medium for callus proliferation, protocorms occurrence and growth was 1/2 Murashige and Skoog (MS) medium adding 50 g·L−1 banana puree, 0.1 mg·L−1 α-naphthaleneacetic acid (NAA), 1.5 mg·L−1 6-benzylaminopurine (6-BA) and 1.0 mg·L−1 kinetin (KT) with 17.33 proliferation coefficient of callus and 19.63 occurrence coefficient of buds after 90 days. Then the buds occurred from protocorm were cultured on 1/2 MS medium including 100 g·L−1 banana puree, 1.0 mg·L−1 NAA, 2.0 mg·L−1 6-BA and 0.05 mg·L−1 KT, in which the proliferation coefficient of callus was 10.32 and occurrence coefficient of buds reached 17.87. In the further subculture, the same medium was simultaneously used for callus proliferation, protocorm occurrence and bud growth. The plantlets developed roots in 1/2 MS medium containing 70 mL·L−1 coconut water and 1.5 mg·L−1 NAA with 100% rooting rates after 90 days. The survival rate was more than 90% after domestication and transplantation. This regeneration protocol will provide technique foundation for protecting wild resource and developing artificial cultivation.  相似文献   

15.
Summary Caustis blakei is an attractive cut foliage plant harvested from the wild in Australia and marketed under the name of koala fern. Previous attempts to propagate large numbers of this plant have been unsuccessful. The effect of four light irradiances on organogenesis from compact and friable callus of C. blakei was studied for 21 wk. Both callus types produced numerous primordial shoots but many failed to develop into green plantlets. However, significantly more primordial shoots and green plantlets developed on the friable callus than on the compact callus, and significantly more green plantlets were regenerated under the higher photon irradiances of 200 and 300 μmol m−2s−1 than under the lower irradiances of 100 and 150 μmol m−2s−1. The compact callus produced its maximum number of green plantlets early in the experiment (after 9 wk), while the friable callus continued to produce primordial shoots and green plantelets throughout the period of the experiment, and reached its maximum production of green plantlets at 21 wk under the irradiance of 300 μmol m−2s−1. Organogenesis from friable callus under high irradiance (300 μmol m−2s−1) offers an efficient propagation method for C. blakei.  相似文献   

16.
Excised rectangular blade pieces of young sporophytes of Eckloniopsis radicosa (Kjellman) Okamura were cultured at four different temperatures (10, 15, 20, 25 °C) and light intensities (10, 20, 40, 80 μmol photon m−2 s−1) to observe callus cell propagation and differentiation. Although rapidly propagating callus cells were observed at a low temperature (15 °C) and low light intensities of (10–20 μmol photon m−2 s−1), differentiation to bladelets was only observed at higher temperatures and light intensities. In rapidly propagating callus cells, the chloroplasts decreased in both size and number. When callus cells with few chloroplasts were exposed to high temperature and light intensity, the chloroplasts gradually increased in number and size until they were the same size as found in cells from young blades. Finally, these cells differentiated and produced bladelets. This is the first report describing a relationship between differentiation and chloroplast size and number in the callus cells on E. radicosa. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
Cultured plant cells generally produce low levels of secondary metabolites, and elicitors of secondary metabolites usually inhibit callus growth. The aim of this study was to determine the effect of 5‐aminolevulinic acid (ALA), a chlorophyll precursor that promotes plant growth, on callus induction from leaves of Taxus cuspidata, and on callus growth on solid medium. ALA at 0.76, 7.6, and 76 μM had similar effects on callus induction and growth, while ALA at 760 μM had negative effects. Next, the effects of ALA concentrations on callus growth and paclitaxel production in suspension cultures in the dark were evaluated. The results showed that 0.76 and 7.6 μM ALA stimulated growth and paclitaxel production, while 76 μM ALA had negative effects. ALA is thought to promote cellular activity under light conditions. Therefore, the effects of light intensity on callus growth and paclitaxel production in the presence of ALA were evaluated. Our results showed that the best conditions for callus growth and paclitaxel production were 7.6 μM ALA under photosynthetically active radiation of 12 μmol photons m?2 s?1. Callus growth and paclitaxel production were inhibited under stronger light (24 μmol photons m?2 s?1). Together, these results show that ALA promoted callus growth and the production of paclitaxel by light‐grown cultured T. cuspidata cells.  相似文献   

18.
This research uses the immature embryos of inbred maize lines (GSH9901, Hi01, Hi02, and Chang 7-2) as receptor materials to establish the callus induction system. These inbred lines provide the receptor materials for the genetic regeneration of maize and the verification of the genetic functions of maize. The factor experiment and orthogonal experiments were used to investigate the impacts of different genotypes, immature embryo size, shield orientation, 2, 4-D concentration, proline concentration, and folic acid concentration on the induction rate of embryogenic callus tissue. A sensitivity experiment testing glyphosate (Bar) and an antibiotic (Cefotaxime sodium) were also conducted. The results indicate that the immature embryos of inbred maize line GSH9901 were the most effective for callus tissue induction, and the immature embryos with a length of 1.6-2.0 mm produce the best result. The upward shield face is more successful for the formation of induced callus. Using orthogonal analysis, we found that the optimal combination for the induction system was A3 (2,4-D concentration 0.25 mg mL-1 ), B1C3 (proline concentration 0.8 mg mL-1 ), and D2 (folate Concentration 0.5 mg mL-1) and the induction rate reached 84%. We found that cold storage at 4 °C for 1 d is more conducive for the formation of embryogenic callus than the other treatments tested. The sensitivity experiment for callus tissue screening revealed the critical concentration of glyphosate to be 10 mg ml-1 , and the critical concentration of antibiotic is 250 mg ml-1 . Using this combination of glyphosate and antibiotic resulted in regenerated plants. This study established the optimal conditions for immature embryo callus tissue induction in maize.  相似文献   

19.
We describe an efficient process for regeneration of Taxus wallichiana (Zucc) plants from callus cultures derived from zygotic embryos. Zygotic embryos cultured on half strength Lloyd and McCown’s basal medium supplemented with SH vitamin (1/2 WPMSH), 0.5 mg I?1 6-benzyladenine (BA) and 1.0–2.0 mg I?1 á-Napthaleneacetic acid (NAA) produced compact yellow (CY) callus after 4 weeks of culture. The 8-week-old CY call! (lines CY-A and CY-B) were initially slow growing but proliferated on transfer to WPM basal medium supplemented with 8.0 mg I?1 2,4-D, 0.1–0.9 mg?1 NAA and 0.3–1.0 mg?1 BA after 4 weeks. Four morphologically distinct calli lines were obtained, of which only two call! lines, CY-B-FW and CY-B-FY were embryogenic. The 12-week-old callus line CY-B-FW developed globular somatic embryos on transfer to secondary medium after 8 weeks and matured in maturation medium after 4 weeks. Only 10% of the mature somatic embryos regenerated into complete plantlets after 4 weeks on conversion medium. Although the frequency of conversion was low, complete regenerated plantlets via somatic embryogenesis were obtained after 7–8 months of initiation of culture. Taxane analysis showed that the paclitaxel accumulation was higher in embryogenic callus than in non-embryogenic callus.  相似文献   

20.
Alkaloid production has been observed in cotyledonary leaf derived callus tissues, and also in in vitro differentiated shoots, and roots of Hyoscyamus muticus. The callus tissue was developed form cotyledonary leaf explants on Murashige and Skoog medium enriched with 2 mg 1-1 2, 4-D and 0.5 mg 1-1 BAP. Cotyledonary leaf derived callus was proliferated in the same medium for 2 passages (1 passage 28-30 days). Green and compact callus was used for alkaloid extraction. Shoots and roots formed on MS medium containing 0.05 mg 1-1 NAA and 0.5 mg 1-1 BAP, and also compact, nodular and embryogenic calli from which these shoots and roots differentiated, were used for alkaloid extraction. Chromatographic studies performed with TLC showed the presence of hyoscyamine as the major alkaloid present in the callus tissues, differentiated shoots and roots. However, alkaloid content varied in different tissues. Differentiated roots were found to contain maximum amount of hyoscyamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号