首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well recognized that estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of the progestin, nomegestrol acetate, on the estrone sulfatase and 17β-hydroxy-steroid dehydrogenase (17β-HSD) activities of MCF-7 and T-47D human breast cancer cells. Using physiological doses of estrone sulfate (E1S: 5 × 10−9 M), nomegestrol acetate blocked very significantly the conversion of E1S to E2. In the MCF-7 cells, using concentrations of 5 × 10−6 M and 5 × 10−5 M of nomegestrol acetate, the decrease of E1S to E2 was, respectively, −43% and −77%. The values were, respectively, −60% and −71% for the T-47D cells. Using E1S at 2 × 10−6 M and nomegestrol acetate at 10−5 M, a direct inhibitory effect on the enzyme of −36% and −18% was obtained with the cell homogenate of the MCF-7 and T-47D cells, respectively. In another series of studies, it was observed that after 24 h incubation of a physiological concentration of estrone (E1: 5 × 10−9 M) this estrogen is converted in a great proportion to E2. Nomegestrol acetate inhibits this transformation by −35% and −85% at 5 × 10−7 M and 5 × 10−5 M, respectively in T-47D cells; whereas in the MCF-7 cells the inhibitory effect is only significant, −48%, at 5 × 10−5 M concentration of nomegestrol acetate. It is concluded that nomegestrol acetate in the hormone-dependent MCF-7 and T-47D breast cancer cells significantly inhibits the estrone sulfatase and 17β-HSD activities which converts E1S to the biologically active estrogen estradiol. This inhibition provoked by this progestin on the enzymes involved in the biosynthesis of E2 can open new clinical possibilities in breast cancer therapy.  相似文献   

2.
Estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell, or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of Medrogestone (Prothil) on 17beta-hydroxysteroid dehydrogenase (17beta-HSD) activities of the hormone-dependent MCF-7 and T-47D human breast cancer cell lines. Using physiological doses of estrone ([3H]-E1: 5 x 10(-9) mol/l) this estrogen is converted in a great proportion to E2 in both cell lines. After 24 h of the cell culture, Medrogestone significantly inhibits this transformation in a dose-dependent manner by 39% and 80% at 5 x 10(-8) M and 5 x 10(-5) M, respectively in T-47D cells; the effect is less intense in MCF-7 cells: 25% and 55% respectively. The IC50 values are 0.45 micromol/l in T-47D and 17.36 micromol/l in MCF-7 cells. It is concluded that the inhibition provoked by Medrogestone on the reductive 17beta-HSD activity involved in the local biosynthesis of the biologically active estrogen estradiol, may constitute a new therapeutic approach for the treatment of breast cancer.  相似文献   

3.
Human breast cancer tissue contains enzymes (estrone sulfatase, 17beta-hydroxysteroid dehydrogenase, aromatase) involved in the last steps of estradiol (E(2)) formation. In this tissue, E(2) can be synthesized by two main pathways: (1) sulfatase-transforms estrogen sulfates into bioactive E(2), and the (2) aromatase-converts androgens into estrogens. Quantitative assessment of E(2) formation in human breast tumors indicates that metabolism of estrone sulfate (E(1)S) via the sulfatase pathway produces 100-500 times more E(2) than androgen aromatization.In the present study, we demonstrated in T-47D and MCF-7 human breast cancer cells that norelgestromin (NGMN) (a metabolite of norgestimate) is a potent inhibitory agent of the estrone sulfatase activity. After 24h incubation of physiological concentrations of E(1)S (5 x 10(-9)mol/l) the inhibitory effect of NGMN at concentrations of 5 x 10(-9), 5 x 10(-7) and 5 x 10(-5)mol/l was 43+/-7, 74+/-4 and 97+/-2%, respectively, in T-47D cells; 25+/-4, 57+/-5 and 96+/-2% respectively, in MCF-7 cells. Comparative studies using medroxyprogesterone acetate (MPA) showed that this progestin also has an inhibitory effect on sulfatase activity, but significantly less intense than that of NGMN. The inhibition for MPA at concentrations of 5 x 10(-9), 5 x 10(-7) and 5 x 10(-5)mol/l was 31+/-5, 47+/-3 and 61+/-3%, respectively, for T-47D cells; 6+/-3, 20+/-3 and 63+/-4%, respectively, for MCF-7 cells.In conclusion, the present data show that NGMN is a very potent inhibitory agent for sulfatase activity in the hormone-dependent breast cancer cells, resulting in decreased tissue concentration of E(2). The clinical significance of this finding remains to be elucidated.  相似文献   

4.
Proliferation assays based on human cell lines are the most used in vitro tests to determine estrogenic properties of compounds. Our objective was to characterise to what extent these in vitro tests provide alternatives for the in vivo Allen and Doisy test, a uterotrophic assay in immature or ovariectomised rodents with uterus weight as a crucial read-out parameter. In the present study four different human cell lines derived from three different female estrogen-sensitive tissues, i.e. breast (MCF-7/BOS and T47D), endometrial (ECC-1) and ovarian (BG-1) cells, were characterised by investigating their relative ERα and ERβ amounts, as the ERα/ERβ ratio is a dominant factor determining their estrogen-dependent proliferative responses. All four cell lines clearly expressed the ERα type and a very low but detectable amount of ERβ on both the mRNA and protein level, with the T47D cell line expressing the highest level of the ERβ type. Subsequently, a set of reference compounds representing different modes of estrogen action and estrogenic potency were used to investigate the proliferative response in the four cell lines, to determine which cell line most accurately predicts the effect observed in vivo. All four cell lines revealed a reasonable to good correlation with the in vivo uterotrophic effect, with the correlation being highest for the MCF-7/BOS cell line (R2=0.85). The main differences between the in vivo uterotrophic assay and the in vitro proliferation assays were observed for tamoxifen and testosterone. The proliferative response of the MCF-7/BOS cells to testosterone was partially caused by its conversion to estradiol by aromatase or via androstenedione to estrone. It is concluded that of the four cell lines tested, the best assay to include in an integrated testing strategy for replacement of the in vivo uterotrophic assay is the human MCF-7/BOS breast cancer cell line.  相似文献   

5.
长链非编码RNAs (long non-coding RNAs, lncRNAs) 是一类长度大于200 nt,无蛋白质编码功能的RNAs。近年来,lncRNAs在肿瘤发生发展中的作用备受关注。LncRNAs芯片分析结合后期实时荧光定量PCR验证发现,ITGA9-AS1在MCF-7细胞中的表达量显著高于耐药细胞MCF-7/5Fu,且其在乳腺癌细胞中的表达量显著低于正常乳腺上皮细胞。生物信息学预测,ITGA9 AS1无蛋白质编码功能。在乳腺癌细胞T47D中过表达ITGA9-AS1,可显著抑制该细胞的增殖和克隆形成能力,增加该细胞对化疗药物顺铂(cisplatin, cDDP)的敏感性。相反,在乳腺上皮细胞MCF-10A中敲低ITGA9-AS1的表达,能够明显增加该细胞的增殖能力和克隆形成能力,同时降低该细胞对cDDP的敏感性。总之,lncRNA ITGA9-AS1可抑制乳腺癌细胞增殖,增强乳腺癌细胞对化疗药物的敏感性。  相似文献   

6.
7.
Four estrogen receptor-positive (ER+) [MCF-7, T47D, ZR75 and BT474] and 3 ER- [Hs578T, MDA-MB-468 and MDA-MB-231] human breast cancer cell lines were examined for expression of the IGFBP-5 and IGFBP-6 genes. Northern blot analysis revealed that all cell lines, except MDA-MB-231, expressed IGFBP-5 mRNA. IGFBP-6 mRNA, however, was expressed only by the ER- cell lines. Western immunoblotting indicated that the previously unidentified 31-kDa and 32-kDa IGF binding species secreted by these cell lines are IGFBP-5. The levels of IGFBP-4 and IGFBP-5 were increased in MCF-7 cells by estradiol and IGF-I, respectively, indicating that these BPs may contribute to the growth stimulatory response to these mitogens.  相似文献   

8.
2DG causes cytotoxicity in cancer cells by disrupting thiol metabolism while Doxorubicin (DOX) induces cytotoxicity in tumor cells by generating reactive oxygen species (ROS). Here we examined the combined cytotoxic action of 2DG and DOX in rapidly dividing T47D breast cancer cells vs. slowly growing MCF-7 breast cancer cells. T47D cells exposed to the combination of 2DG/DOX significantly decreased cell survival compared to controls, while 2DG/DOX had no effect on MCF-7 cells. 2DG/DOX also disrupted the oxidant status of T47D treated cells, decreased intracellular total glutathione and increased glutathione disulfide (%GSSG) compared to MCF-7 cells. Lipid peroxidation increased in T47D cells treated with 2DG and/or DOX, but not in MCF-7 cells. T47D cells were significantly protected by NAC, indicating that the combined treatment exerts its action by increasing ROS production and disrupting antioxidant stores. When we inhibited glutathione synthesis with BSO, T47D cells became more sensitive to 2DG/DOX-induced cytotoxicity, but NAC significantly reversed this cytotoxic effect. Finally, 2DG/DOX, and BSO significantly increased the %GSSG in T47D cells, an effect which was also reversed by NAC. Our results suggest that exposure of rapidly dividing breast cancer cells to 2DG/DOX enhances cytotoxicity via oxidative stress and via disruptions to thiol metabolism.  相似文献   

9.
Importance of estrogen sulfates in breast cancer   总被引:10,自引:0,他引:10  
Estrogen sulfates are quantitatively the most important form of circulating estrogens during the menstrual cycle and in the post-menopausal period. Huge quantities of estrone sulfate and estradiol sulfate are found in the breast tissues of patients with mammary carcinoma. It has been demonstrated that different estrogen-3-sulfates (estrone-3-sulfate, estradiol-3-sulfate, estriol-3-sulfate) can provoke important biological responses in different mammary cancer cell lines: there is a significant increase in progesterone receptor. On the other hand, no significant effect was observed with estrogen-17-sulfates. The reason for the biological response of estrogen-3-sulfates is that these sulfates are hydrolyzed, and no sulfatase activity for C17-sulfates is present in these cell lines. [3H]Estrone sulfate is converted in a very high percentage to estradiol (E2) in different hormone-dependent mammary cancer cell lines (MCF-7, R-27, T-47D), but very little or no conversion was found in the hormone-independent mammary cancer cell lines (MDA-MB-231, MDA-MB-436). Different anti-estrogens (tamoxifen and derivatives) and another potent anti-estrogen: ICI 164,384, decrease the concentration of estradiol very significantly after incubation of estrone sulfate with the different hormone-dependent mammary cancer cell lines. No significant effect was observed for the uptake and conversion of estrone sulfate in the hormone-independent mammary cancer cell lines. Progesterone provokes an important decrease in the uptake and in estradiol levels after incubation of [3H]estrone sulfate with the MCF-7 cells. It is concluded that in breast cancer: (1) Estrogen sulfates can play an important role in the biological response of estrogens; (2) Anti-estrogens and progesterone significantly decrease the uptake and estradiol levels in hormone-dependent mammary cancer cell lines; (3) The control of the sulfatase and 17 beta-hydroxysteroid dehydrogenase activities, which are key steps in the formation of estradiol in the breast, can open new possibilities in the treatment of hormone-dependent mammary cancer.  相似文献   

10.
Lack of estrogen receptor (ER) and presence of vimentin (VIM) associate with poor prognosis in human breast cancer. We have explored the relationships between ER, VIM, and invasiveness in human breast cancer cell lines. In the matrigel outgrowth assay, ER+/VIM- (MCF-7, T47D, ZR-75-1), and ER-/VIM- (MDA-MB-468, SK-Br-3) cell lines were uninvasive, while ER-/VIM+ (BT549, MDA-MB-231, MDA-MB-435, MDA-MB-436, Hs578T) lines formed invasive, penetrating colonies. Similarly, ER-/VIM+ cell lines were significantly more invasive than either the ER+/VIM- or ER-/VIM- cell lines in the Boyden chamber chemoinvasion assay. Invasive activity in nude mice was only seen with ER-/VIM+ cell lines MDA-MB-231, MDA-MB-435 and MDA-MB-436. Hs578T cells (ER-/VIM+) showed hematogenous dissemination to the lungs in one of five mice, but lacked local invasion. The ER-/VIM+ MCF-7ADR subline was significantly more active than the MCF-7 cells in vitro, but resembled the wild-type MCF-7 parent in in vivo activity. Data from these cell lines suggest that human breast cancer progression results first in the loss of ER, and subsequently in VIM acquisition, the latter being associated with increased metastatic potential through enhanced invasiveness. The MCF-7ADR data provide evidence that this transition can occur in human breast cancer cells. Vimentin expression may provide useful insights into mechanisms of invasion and/or breast cancer cell progression.  相似文献   

11.
Breast cancer is a leading cause of death for women. The estrogen receptors (ERs) ratio is important in the maintenance of mitochondrial redox status, and higher levels of ERβ increases mitochondrial functionality, decreasing ROS production. Our aim was to determine the interaction between the ERα/ERβ ratio and the response to cytotoxic treatments such as cisplatin (CDDP), paclitaxel (PTX) and tamoxifen (TAM). Cell viability, apoptosis, autophagy, ROS production, mitochondrial membrane potential, mitochondrial mass and mitochondrial functionality were analyzed in MCF-7 (high ERα/ERβ ratio) and T47D (low ERα/ERβ ratio) breast cancer cell lines. Cell viability decreased more in MCF-7 when treated with CDDP and PTX. Apoptosis was less activated after cytotoxic treatments in T47D than in MCF-7 cells. Nevertheless, autophagy was increased more in CDDP-treated MCF-7, but less in TAM-treated cells than in T47D. CDDP treatment produced a raise in mitochondrial mass in MCF-7, as well as the citochrome c oxidase (COX) and ATP synthase protein levels, however significantly reduced COX activity. In CDDP-treated cells, the overexpression of ERβ in MCF-7 caused a reduction in apoptosis, autophagy and ROS production, leading to higher cell survival; and the silencing of ERβ in T47D cells promoted the opposite effects. In TAM-treated cells, ERβ-overexpression led to less cell viability by an increment in autophagy; and the partial knockdown of ERβ in T47D triggered an increase in ROS production and apoptosis, leading to cell death. In conclusion, ERβ expression plays an important role in the response of cancer cells to cytotoxic agents, especially for cisplatin treatment.  相似文献   

12.
In the present study, we explored the effect of the progestin medrogestone on the sulfatase and sulfotransferase activities in the hormone-dependent MCF-7 and T-47D human breast cancer cell lines. After 24 h incubation at 37 degrees C of physiological concentrations of estrone sulfate ([3H]-E1S: 5x10(-9) mol/l), it was observed that this estrogen was converted in a great proportion to E2 in both cell lines. Medrogestone significantly inhibits this transformation, at all the concentrations tested (5x10(-8) to 5x10(-5) mol/l), in both cell lines. The IC50 values were 1.93 micromol/l and 0.21 micromol/l in MCF-7 and T-47D cells, respectively. In another series of studies, after 24 h incubation at 37 degrees C of physiological concentrations of estrone ([3H]-E1: 5x10(-9) mol/l), the sulfotransferase activity was detectable in both cell lines. Estrogen sulfates (ES) are found exclusively in the culture medium, which suggests that as soon as they are formed they are excreted into the medium. Medrogestone has a biphasic effect on sulfotransferase activity in both cell lines. At low doses: 5x10(-8) and 5x10(-7) mol/l, this compound stimulates the enzyme by +73.5 and 52.7%, respectively, in MCF-7, and by 84.5 and 62.6% in T-47D cells. At high concentrations: 5x10(-6) and 5x10(-5) mol/l, medrogestone has no effect on MCF-7 cells, but inhibits the sulfotransferase activity in T-47D cells by -31.4% at 5x10(-5) mol/l. In conclusion, the inhibitory effect provoked by medrogestone on the enzyme involved in the biosynthesis of E2 (sulfatase pathway) in estrogen-dependent breast cancer, as well as the stimulatory effect on the formation of the inactive ES, support a probable anti-proliferative effect of this progestin in breast tissue. Clinical applications of these findings can open new therapeutic possibilities for this disease.  相似文献   

13.
From the heartwood of Dalbergia parviflora, five compounds, dalparvin A (1), B (2), C (3), dalparvinol C (4), and neokhriol A (5), along with 11 known compounds, kenusanone G (6), cajanin (7), sophorol (8), alpinetin (9), hesperetin (10), 3'-O-methylorobol, odoratin, (2R)(3R)-2,3-trans 7-hydroxy-5-methoxydihydroflavonol, (6aR, 11aR)-3,8-dihydroxy-9-methoxypterocarpan, (6aR, 11aR)- vesticarpan, and methyl-3,4-dihydroxy-2-methoxybenzoate were isolated and characterized. Isolates were evaluated for their cell proliferation stimulatory activity against MCF-7, T-47D, and BT20 human breast cancer cell lines. Along with 7-10, two compounds 2 and 3 stimulated not only MCF-7, but also T-47D human breast cancer cell proliferation. Compound 6 had activity only against MCF-7 cells, and the activity of 7 was more than equivalent to that of daidzein. On the other hand, none of the isolates had any significant effects on BT20 cell proliferation, and these results indicated that the stimulative activity of these compounds was not general to any cell proliferations. Furthermore, these compounds were tested in the estrogen-responsive transient luciferase reporter assay.  相似文献   

14.
Using a combination of hormone-binding assays, immunologic techniques, and mRNA hybridizations we have measured the estrogen receptor (ER) content and studied the hormonal regulation of ER mRNA in one estrogen responsive and one estrogen unresponsive breast cancer cell line, MCF-7 and T47Dco, respectively. Estradiol binding could be detected in cytosol from MCF-7 cells but not in T47Dco cells. However, when measured by an enzyme-linked immunosorbent assay, T47Dco cells were found to contain approximately 15 fmol ER/mg cytosolic protein or 10% of the ER content in MCF-7 cells. Immunologically reactive ER in T47Dco cells was indistinguishable in size (approximately equal to 68 KD) from the ER in MCF-7 cells, as shown by Western blotting using a monoclonal antihuman ER antibody. Quantification of ER mRNA in MCF-7 and T47Dco cells indicated that T47Dco cells contained approximately 50% of the ER mRNA levels found in MCF-7 cells. This basal level of ER mRNA in T47Dco cells was not decreased by estradiol treatment, as opposed to in MCF-7 cells where estradiol caused 40-60% decrease in the ER mRNA expression. Also, estradiol did not increase the progesterone receptor (PR) mRNA levels in T47Dco cells whereas in MCF-7 cells an approximately 5-fold increase of the PR mRNA levels occurred after estradiol treatment. However, incubation of the cells with the synthetic progestin R5020 decreased the ER mRNA levels to approximately the same degree in both cell lines. In conclusion, we have shown that estrogen down-regulates ER mRNA and up-regulates PR mRNA in MCF-7 cells. Neither of these estrogenic effects were seen in T47Dco cells. It appears that the steroid-resistance in T47Dco cells does not occur as a consequence of a complete absence of ER mRNA or protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have examined the effects of estrogen and progestin agonist and antagonist ligands on regulation of progesterone receptor (PR) protein and mRNA levels in a variety of human breast cancer cell lines. By Northern blot analysis, using human PR cDNA probes, PR mRNA in T47D and MCF-7 cells appears as five species of approximately 11.4, 5.8, 5.3, 3.5, and 2.8 kilobases. PR mRNA species are not detected in the PR protein-negative breast cancer cell lines MDA-MB-231 and LY2. T47D cells contain high levels of PR mRNA and protein (detected by hormone binding assay or Western blot analysis), and the PR protein and mRNA content of T47D cells are reduced to about 10% of the control level within 48 h of treatment with 10 nM promegestone; 17, 21-dimethyl-19-nor-pregna-4,9-diene-3, 20-dione (R5020) or 16 alpha-ethyl-21-hydroxy-19-nor-pregn-4-ene-3,20-dione (ORG2058), both potent progestins. In contrast, treatment of T47D cells with the antiprogestin 17 beta-hydroxy-11 beta-[4-dimethylaminophenyl]-17 alpha-(1-propynyl)-estra- 4, 9-dien-3-one) (RU38486) reduces PR protein and mRNA levels only transiently. PR protein and mRNA are virtually undetectable in control MCF-7 cells grown in the absence of estrogens. When estradiol is administered to MCF-7 cells, the PR mRNA and protein levels increase gradually and proportionately (10- or 40-fold, respectively, in 3 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Aromatase is present in human breast tumors and in breast cancer cell lines suggesting the possibility of in-situ estrogen production via the androstenedione to estrone and estradiol pathway. However, proof of the biologic relevance of aromatase in breast cancer tissue requires the demonstration that this enzyme mediates biologic effects on cell proliferation. Accordingly, we studied the effects of the aromatase substrate, androstenedione, on the rate of proliferation of wild-type and aromatase-transfected MCF-7 breast cancer cells. Androstenedione did not increase cell growth in wild-type MCF-7 cells which contained relatively low aromatase activity and produced 4-fold more estrone than estradiol. In contrast, aromatase-transfected cell contained higher amounts of aromatase, produced predominantly estradiol, and responded to androstenedione with enhanced growth. An aromatase inhibitor fadrozole hydrochloride, blocked the proliferative effects of androstenedione providing evidence for the role of aromatase in this process. As further evidence of the requirement for aromatase, cells transfected with the neomycin resistance expression plasmid but lacking the aromatase cDNA did not respond to androstenedione. These studies provide evidence that aromatase may have a biologic role for in-situ synthesis of estrogens of breast cancer tissue.  相似文献   

17.
Heregulin regulation of Akt/protein kinase B in breast cancer cells.   总被引:3,自引:0,他引:3  
In the present studies, we demonstrate that heregulin is a potent and rapid activator of the serine/threonine kinase called Akt in the MCF-7 breast cancer cell line but not in 3 other breast cancer cell lines (T47D, HBL-100, and MDA-231). The extent of activation of Akt in the 4 cell lines correlated with the ability of heregulin to activate phosphatidylinositol 3-kinase and inhibition of the kinase blocked Akt activation. A monoclonal antibody to HER2 inhibited the ability of heregulin to activate Akt in the MCF-7 cells. BT474, a breast cancer cell line which overexpresses HER2, had high basal Akt enzymatic activity. This high basal activity was lowered when cells were pre-incubated with an anti-HER2 monoclonal antibody which is used to treat breast cancer patients. Our results indicate that heregulin is a potent activator of Akt and that overexpression of HER2 in breast cancers could also lead to activation of Akt.  相似文献   

18.
A series of estrone and estradiol derivatives having an N-butyl,methyl heptanamide side chain at C6-position were synthesized, tested as inhibitors of type 1 17beta-HSD and assessed for their possible estrogenic activity. A better type 1 17beta-HSD inhibition was obtained for the 6beta-side chain orientation over 6alpha; the C17-alcohols are more potent inhibitors than the corresponding ketones; introducing a 2-methoxy group decreased the inhibitory potency; and the replacement of a C-S bond by a C-C bond in the C6beta-side chain is not detrimental to inhibition. Interestingly, the new inhibitors were also found less estrogenic than the lead compound in two breast cancer cell lines, T-47D and MCF-7.  相似文献   

19.
NgBR is a type I receptor with a single transmembrane domain and was identified as a specific receptor for Nogo-B. Our recent findings demonstrated that NgBR binds farnesylated Ras and recruits Ras to the plasma membrane, which is a critical step required for the activation of Ras signaling in human breast cancer cells and tumorigenesis. Here, we first use immunohistochemistry and real-time PCR approaches to examine the expression patterns of Nogo-B and NgBR in both normal and breast tumor tissues. Then, we examine the relationship between NgBR expression and molecular subtypes of breast cancer, and the roles of NgBR in estrogen-dependent survivin signaling pathway. Results showed that NgBR and Nogo-B protein were detected in both normal and breast tumor tissues. However, the expression of Nogo-B and NgBR in breast tumor tissue was much stronger than in normal breast tissue. The statistical analysis demonstrated that NgBR is highly associated with ER-positive/HER2-negative breast cancer. We also found that the expression of NgBR has a strong correlation with the expression of survivin, which is a well-known apoptosis inhibitor. The correlation between NgBR and survivin gene expression was further confirmed by real-time PCR. In vitro results also demonstrated that estradiol induces the expression of survivin in ER-positive T47D breast tumor cells but not in ER-negative MDA-MB-468 breast tumor cells. NgBR knockdown with siRNA abolishes estradiol-induced survivin expression in ER-positive T47D cells but not in ER-negative MDA-MB-468 cells. In addition, estradiol increases the expression of survivin and cell growth in ER-positive MCF-7 and T47D cells whereas knockdown of NgBR with siRNA reduces estradiol-induced survivin expression and cell growth. In summary, these results indicate that NgBR is a new molecular marker for breast cancer. The data suggest that the expression of NgBR may be essential in promoting ER-positive tumor cell proliferation via survivin induction in breast cancer.  相似文献   

20.
The study was designed to determine the process and limitations by which estrone sulfate may be a precursor of estradiol in the parenchymal cells of the normal breast. The concentration of estrone sulfate in breast nipple aspirate fluid was 1000-fold greater than that of estradiol. Concentrations of 3H-estrone sulfate in parenchymal cells were only 0.20-0.33 times that of the 1.0 nM concentration in the medium, while 3H-estrone achieved concentrations up to 24 times that in the medium at 37 degrees C. Nevertheless, estrone sulfate added to the medium was linearly converted within a 1000-fold concentration range to estrone in intact cells with a mean half-time of conversion of 628 min per 10(6) cells. Homogenized cells had a half-time of 246 min per 10(6) cells. Thus, the time for entry of estrone sulfate into cells reduced the rate by approximately 55%. In split samples, the Vmax values (+/- S.D.) for intact and homogenized cells were 12.6 +/- 1.4 and 18.3 nmol/h mg DNA, respectively (P<0.03). The corresponding Km values for intact and homogenized cells were 6.0 +/- 1.1 and 4.7 +/- 1.0 microM. Conversion of estrone sulfate to estradiol was more efficient in intact cells than in homogenates with mean half-times of 2173 and 7485 min per 10(6) cells, respectively. Conversion of estrone to estrone sulfate did not occur in these cells despite sulfonation of estrone by MCF-7 breast cancer cells under identical conditions. It is concluded that estrone sulfate can serve as a precursor for estradiol in normal breast tissue. Conversion of estrone to estradiol is a limiting step in the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号