首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas.

Methods

Pregnant Wistar rats received dexamethasone acetate in their drinking water (1 µg/ml) during the last week or throughout gestation. Fetuses and their pancreases were analyzed at day 15 and 21 of gestation. Morphometrical analysis was performed on pancreatic sections after immunohistochemistry techniques and insulin secretion was evaluated on fetal islets collected in vitro.

Results

Dexamethasone given the last week or throughout gestation reduced the beta-cell mass in 21-day-old fetuses by respectively 18% or 62%. This was accompanied by a defect in insulin secretion. The alpha-cell mass was reduced similarly. Neither islet vascularization nor beta-cell proliferation was affected when dexamethasone was administered during the last week, which was however the case when given throughout gestation. When given from the beginning of gestation, dexamethasone reduced the number of cells expressing the early marker of endocrine lineage neurogenin-3 when analyzed at 15 days of fetal age.

Conclusions

GCs reduce the beta- and alpha-cell mass by different mechanisms according to the stage of development during which the treatment was applied. In fetuses exposed to glucocorticoids the last week of gestation only, beta-cell mass is reduced due to impairment of beta-cell commitment, whereas in fetuses exposed throughout gestation, islet vascularization and lower beta-cell proliferation are involved as well, amplifying the reduction of the endocrine mass.  相似文献   

2.

Background

The role and mechanism of action of MIF in bronchopulmonary dysplasia (BPD) are not known. We hypothesized that increased MIF signaling would ameliorate the pulmonary phenotype of BPD in the mouse lung.

Methods

We studied newborn wild type (WT), MIF knockout (MIFKO), and lung MIF transgenic (MIFTG) mice in room air and a BPD model, and examined the effects of administering a small molecule MIF agonist and antagonist. Lung morphometry was performed and mRNA and protein expression of vascular mediators were analyzed.

Results

The pulmonary phenotype of MIFKO and MIFTG mice lungs in room air (RA) and BPD model were comparable to the WT-BPD mice at postnatal (PN) day 14. Vascular endothelial growth factor (VEGF)-A, -R1 and Angiopoietin (Ang)1 mRNA were decreased, and Ang2 increased in the WT-BPD, MIFKO-RA, MIFKO-BPD, MIFTG-RA and MIFTG-BPD mice lungs, compared to appropriate controls. The protein expression of Ang1 in the MIFKO-RA was similar to WT-RA, but decreased in MIFTG-RA, and decreased in all the BPD groups. Ang2 was increased in MIFKO-RA, MIFTG-RA and in all 3 BPD groups. Tie2 was increased in WT-BPD compared to WT-RA, but decreased in MIFKO- and MIFTG- RA and BPD groups. VEGFR1 was uniformly decreased in MIFKO-RA, MIFTG-RA and in all 3 BPD groups. VEGF-A had a similar expression across all RA and BPD groups. There was partial recovery of the pulmonary phenotype in the WT-BPD model treated with the MIF agonist, and in the MIFTG mice treated with the MIF antagonist.

Conclusions

These data point to the careful regulatory balance exerted by MIF in the developing lung and response to hyperoxia and support the potential therapeutic value of small molecule MIF modulation in BPD.  相似文献   

3.

Background

Human pancreatic islet transplantation is a prospective curative treatment for diabetes. However, the lack of donor pancreases greatly limits this approach. One approach to overcome the limited supply of donor pancreases is to generate functional islets from human embryonic stem cells (hESCs), a cell line with unlimited proliferative capacity, through rapid directed differentiation. This study investigated whether pancreatic insulin-producing cells (IPCs) differentiated from hESCs could correct hyperglycemia in severe combined immunodeficient (SCID)/non-obese diabetic (NOD) mice, an animal model of diabetes.

Methods

We generated pancreatic IPCs from two hESC lines, YT1 and YT2, using an optimized four-stage differentiation protocol in a chemically defined culture system. Then, about 5–7×106 differentiated cells were transplanted into the epididymal fat pad of SCID/NOD mice (n = 20). The control group were transplanted with undifferentiated hESCs (n = 6). Graft survival and function were assessed using immunohistochemistry, and measuring serum human C-peptide and blood glucose levels.

Results

The pancreatic IPCs were generated by the four-stage differentiation protocol using hESCs. About 17.1% of differentiated cells expressed insulin, as determined by flow cytometry. These cells secreted insulin/C-peptide following glucose stimulation, similarly to adult human islets. Most of these IPCs co-expressed mature β cell-specific markers, including human C-peptide, GLUT2, PDX1, insulin, and glucagon. After implantation into the epididymal fat pad of SCID/NOD mice, the hESC-derived pancreatic IPCs corrected hyperglycemia for ≥8 weeks. None of the animals transplanted with pancreatic IPCs developed tumors during the time. The mean survival of recipients was increased by implanted IPCs as compared to implanted undifferentiated hESCs (P<0.0001).

Conclusions

The results of this study confirmed that human terminally differentiated pancreatic IPCs derived from hESCs can correct hyperglycemia in SCID/NOD mice for ≥8 weeks.  相似文献   

4.

Background

Hyperoxia exposure of premature infants causes obliteration of the immature retinal microvessels, leading to a condition of proliferative vitreoretinal neovascularization termed retinopathy of prematurity (ROP). Previous work has demonstrated that the hyperoxia-induced vascular injury is mediated by dysfunction of endothelial nitric oxide synthase resulting in peroxynitrite formation. This study was undertaken to determine the involvement of the ureahydrolase enzyme arginase in this pathology.

Methods and Findings

Studies were performed using hyperoxia-treated bovine retinal endothelial cells (BRE) and mice with oxygen-induced retinopathy (OIR) as experimental models of ROP. Treatment with the specific arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) prevented hyperoxia-induced apoptosis of BRE cells and reduced vaso-obliteration in the OIR model. Furthermore, deletion of the arginase 2 gene protected against hyperoxia-induced vaso-obliteration, enhanced physiological vascular repair, and reduced retinal neovascularization in the OIR model. Additional deletion of one copy of arginase 1 did not improve the vascular pathology. Analyses of peroxynitrite by quantitation of its biomarker nitrotyrosine, superoxide by dihydroethidium imaging and NO formation by diaminofluoroscein imaging showed that the protective actions of arginase 2 deletion were associated with blockade of superoxide and peroxynitrite formation and normalization of NOS activity.

Conclusions

Our data demonstrate the involvement of arginase activity and arginase 2 expression in hyperoxia-induced vascular injury. Arginase 2 deletion prevents hyperoxia-induced retinal vascular injury by preventing NOS uncoupling resulting in decreased reactive oxygen species formation and increased nitric oxide bioavailability.  相似文献   

5.
6.

Background

Asthmatic responses involve a systemic component where activation of the bone marrow leads to mobilization and lung-homing of progenitor cells. This traffic may be driven by stromal cell derived factor-1 (SDF-1), a potent progenitor chemoattractant. We have previously shown that airway angiogenesis, an early remodeling event, can be inhibited by preventing the migration of endothelial progenitor cells (EPC) to the lungs. Given intranasally, AMD3100, a CXCR4 antagonist that inhibits SDF-1 mediated effects, attenuated allergen-induced lung-homing of EPC, vascularization of pulmonary tissue, airway eosinophilia and development of airway hyperresponsiveness. Since SDF-1 is also an eosinophil chemoattractant, we investigated, using a transgenic eosinophil deficient mouse strain (PHIL) whether EPC lung accumulation and lung vascularization in allergic airway responses is dependent on eosinophilic inflammation.

Methods

Wild-type (WT) BALB/c and eosinophil deficient (PHIL) mice were sensitized to house dust mite (HDM) using a chronic exposure protocol and treated with AMD3100 to modulate SDF-1 stimulated progenitor traffic. Following HDM challenge, lung-extracted EPCs were enumerated along with airway inflammation, microvessel density (MVD) and airway methacholine responsiveness (AHR).

Results

Following Ag sensitization, both WT and PHIL mice exhibited HDM-induced increase in airway inflammation, EPC lung-accumulation, lung angiogenesis and AHR. Treatment with AMD3100 significantly attenuated outcome measures in both groups of mice. Significantly lower levels of EPC and a trend for lower vascularization were detected in PHIL versus WT mice.

Conclusions

This study shows that while allergen-induced lung-homing of endothelial progenitor cells, increased tissue vascularization and development lung dysfunction can occur in the absence of eosinophils, the presence of these cells worsens the pathology of the allergic response.  相似文献   

7.

Aims/Hypothesis

Pancreatic beta-cells retain limited ability to regenerate and proliferate after various physiologic triggers. Identifying therapies that are able to enhance beta-cell regeneration may therefore be useful for the treatment of both type 1 and type 2 diabetes.

Methods

In this study we investigated endogenous and transplanted beta-cell regeneration by serially quantifying changes in bioluminescence from beta-cells from transgenic mice expressing firefly luciferase under the control of the mouse insulin I promoter. We tested the ability of pioglitazone and alogliptin, two drugs developed for the treatment of type 2 diabetes, to enhance beta-cell regeneration, and also defined the effect of the immunosuppression with rapamycin and tacrolimus on transplanted islet beta mass.

Results

Pioglitazone is a stimulator of nuclear receptor peroxisome proliferator-activated receptor gamma while alogliptin is a selective dipeptidyl peptidase IV inhibitor. Pioglitazone alone, or in combination with alogliptin, enhanced endogenous beta-cell regeneration in streptozotocin-treated mice, while alogliptin alone had modest effects. In a model of syngeneic islet transplantation, immunosuppression with rapamycin and tacrolimus induced an early loss of beta-cell mass, while treatment with insulin implants to maintain normoglycemia and pioglitazone plus alogliptin was able to partially promote beta-cell mass recovery.

Conclusions/Interpretation

These data highlight the utility of bioluminescence for serially quantifying functional beta-cell mass in living mice. They also demonstrate the ability of pioglitazone, used either alone or in combination with alogliptin, to enhance regeneration of endogenous islet beta-cells as well as transplanted islets into recipients treated with rapamycin and tacrolimus.  相似文献   

8.
9.

Objective

Rho-associated kinase (ROCK) signaling pathway has been shown to mediate various cellular functions including cell proliferation, migration, adhesion, apoptosis, and contraction, all of which may be involved in pathogenesis of atherosclerosis. Endogenous nitric oxide (NO) is well known to have an anti-atherosclerotic effect, whereas the exogenous NO-mediated cardiovascular effect still remains controversial. The purpose of this study was to evaluate the effect of exogenous NO on ROCK activity in vascular smooth muscle cells (VSMCs) in vitro and in vivo.

Methods

VSMCs migration was evaluated using a modified Boyden chamber assay. ROCK activities were measured by Western blot analysis in murine and human VSMCs and aorta of mice treated with or without angiotensin II (Ang II) and/or sodium nitroprusside (SNP), an NO donor.

Results

Co-treatment with SNP inhibited the Ang II-induced cell migration and increases in ROCK activity in murine and human VSMCs. Similarly, the increased ROCK activity 2 weeks after Ang II infusion in the mouse aorta was substantially inhibited by subcutaneous injection of SNP.

Conclusions

These findings suggest that administration of exogenous NO can inhibit ROCK activity in VSMCs in vitro and in vivo.  相似文献   

10.

Objective

Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2).

Research Design and Methods

To study neuronal function and synaptic plasticity in the absence of confounding factors such as hyperglycaemia, we used a mouse model with a central nervous system- (CNS)-restricted deletion of IRS-2 (NesCreIrs2KO).

Results

We report a deficit in NMDA receptor-dependent synaptic plasticity in the hippocampus of NesCreIrs2KO mice, with a concomitant loss of metaplasticity, the modulation of synaptic plasticity by the previous activity of a synapse. These plasticity changes are associated with reduced basal phosphorylation of the NMDA receptor subunit NR1 and of downstream targets of the PI3K pathway, the protein kinases Akt and GSK-3β.

Conclusions

These findings reveal molecular and cellular mechanisms that might underlie cognitive deficits linked to specific defects of neuronal insulin signalling.  相似文献   

11.

Background

We demonstrated that mouse embryonic stem (ES) cells-derived vascular endothelial growth factor receptor-2 (VEGF-R2) positive cells could differentiate into both endothelial cells (EC) and mural cells (MC), and termed them as vascular progenitor cells (VPC). Recently, we have established a method to expand monkey and human ES cells-derived VPC with the proper differentiation stage in a large quantity. Here we investigated the therapeutic potential of human VPC-derived EC and MC for vascular regeneration.

Methods and Results

After the expansion of human VPC-derived vascular cells, we transplanted these cells to nude mice with hindlimb ischemia. The blood flow recovery and capillary density in ischemic hindlimbs were significantly improved in human VPC-derived EC-transplanted mice, compared to human peripheral and umbilical cord blood-derived endothelial progenitor cells (pEPC and uEPC) transplanted mice. The combined transplantation of human VPC-derived EC and MC synergistically improved blood flow of ischemic hindlimbs remarkably, compared to the single cell transplantations. Transplanted VPC-derived vascular cells were effectively incorporated into host circulating vessels as EC and MC to maintain long-term vascular integrity.

Conclusions

Our findings suggest that the combined transplantation of human ES cells-derived EC and MC can be used as a new promising strategy for therapeutic vascular regeneration in patients with tissue ischemia.  相似文献   

12.
13.
X Wu  Q Zhang  X Wang  J Zhu  K Xu  H Okada  R Wang  M Woo 《PloS one》2012,7(8):e41976

Aims/Hypothesis

Pancreatic beta-cell mass expands through adulthood under certain conditions. The related molecular mechanisms are elusive. This study was designed to determine whether surviving (also known as Birc5), which is transiently expressed perinatally in islets, was required for beta-cell mass expansion in the pancreatic duct-ligated mouse model.

Methods

Mice with beta cell–specific deletion of survivin (RIPCre+survivinfl/fl) and their control littermates (RIPCre+survivin+/+) were examined to determine the essential role of survivin in partial pancreatic duct ligation (PDL)-induced beta-cell proliferation, function and survival.

Results

Resurgence of survivin expression occurred as early as day 3 post-PDL. By day 7 post-PDL, control mice showed significant expansion of beta-cell mass and increase in beta-cell proliferation and islet number in the ligated tail of the pancreas. However, mice deficient in beta-cell survivin showed a defect in beta-cell mass expansion and proliferation with a marked attenuation in the increase of total islet number, largely due to an impairment in the increase in number of larger islets while sparing the increase in number of small islets in the ligated tail of pancreas, resulting in insufficient insulin secretion and glucose intolerance. Importantly however, beta cell neogenesis and apoptosis were not affected by the absence of survivin in beta cells after PDL.

Conclusions/Interpretation

Our results indicate that survivin is essential for beta-cell mass expansion after PDL. Survivin appears to exhibit a preferential requirement for proliferation of preexisting beta cells.  相似文献   

14.

Background

Loss of integrity of the epithelial and endothelial barriers is thought to be a prominent feature of ventilator-induced lung injury (VILI). Based on its function in vascular integrity, we hypothesize that the angiopoietin (Ang)-Tie2 system plays a role in the development of VILI. The present study was designed to examine the effects of mechanical ventilation on the Ang-Tie2 system in lung tissue. Moreover, we evaluated whether treatment with Ang-1, a Tie2 receptor agonist, protects against inflammation, vascular leakage and impaired gas exchange induced by mechanical ventilation.

Methods

Mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with either an inspiratory pressure of 10 cmH2O (‘low’ tidal volume ∼7.5 ml/kg; LVT) or 18 cmH2O (‘high’ tidal volume ∼15 ml/kg; HVT). At initiation of HVT-ventilation, recombinant human Ang-1 was intravenously administered (1 or 4 µg per animal). Non-ventilated mice served as controls.

Results

HVT-ventilation influenced the Ang-Tie2 system in lungs of healthy mice since Ang-1, Ang-2 and Tie2 mRNA were decreased. Treatment with Ang-1 increased Akt-phosphorylation indicating Tie2 signaling. Ang-1 treatment reduced infiltration of granulocytes and expression of keratinocyte-derived chemokine (KC), macrophage inflammatory protein (MIP)-2, monocyte chemotactic protein (MCP)-1 and interleukin (IL)-1β caused by HVT-ventilation. Importantly, Ang-1 treatment did not prevent vascular leakage and impaired gas exchange in HVT-ventilated mice despite inhibition of inflammation, vascular endothelial growth factor (VEGF) and Ang-2 expression.

Conclusions

Ang-1 treatment downregulates pulmonary inflammation, VEGF and Ang-2 expression but does not protect against vascular leakage and impaired gas exchange induced by HVT-ventilation.  相似文献   

15.

Objective

It has been shown that Mindbomb (Mib), an E3 Ubiquitin ligase, is an essential modulator of Notch signaling during development. However, its effects on vascular development remain largely unknown.

Approaches and Results

We identified a number of novel proteins that physically interact with Mib, including the Factor Inhibiting Hypoxia Inducible Factor 1 (FIH-1, also known as HIF1AN) from a yeast two hybrid screen, as previously reported. In cultured cells, FIH-1 colocalizes with Mib1, corroborating their potential interaction. In zebrafish embryos, FIH-1 appears to modulate VEGF-A signaling activity; depletion of fih-1 induces ectopic expression of vascular endothelial growth factor–a (vegfa) and leads to exuberant ectopic sprouts from intersegmental vessels (ISVs). Conversely, over-expression of fih-1 substantially attenuates the formation of ISVs, which can be rescued by concurrent over-expression of vegfa, indicating that FIH-1/HIF1AN may fine tune VEGF-A signaling.

Conclusions

Taken together, our data suggest that FIH-1 interacts with Mib E3 Ubiquitin ligase and modulates vascular development by attenuating VEGF-A signaling activity.  相似文献   

16.

Background

We assessed whether Angiopoietin-2 (Ang2), a Tie2 ligand and partial antagonist of Angiopoietin-1 (Ang1), is required for early vessel destabilization during postischemic angiogenesis, when combined with vascular growth factors.

Methods

In vitro, matrigel co-cultures assessed endothelial-cell tube formation and pericyte recruitment after stimulation of VEGF-A, Apelin (APLN), Ang1 with or without Ang2. In a murine hindlimb ischemia model, adeno-associated virus (rAAV, 3×1012 virusparticles) transduction of VEGF-A, APLN and Ang1 with or without Ang2 (continuous or early expression d0-3) was performed intramuscularly (d-14). Femoral artery ligation was performed at d0, followed by laser doppler perfusion meassurements (LDI) 7 and 14. At d7 (early timepoint) and d14 (late timepoint), histological analysis of capillary/muscle fiber ratio (CMF-R, PECAM-1) and pericyte/capillary ratio (PC-R, NG2) was performed.

Results

In vitro, VEGF-A, APLN and Ang1 induced ring formation, but only APLN and Ang1 recruited pericytes. Ang2 did not affect tube formation by APLN, but reduced pericyte recruitment after APLN or Ang1 overexpression. In vivo, rAAV.VEGF-A did not alter LDI-perfusion at d14, consistent with an impaired PC-R despite a rise in CMF-R. rAAV.APLN improved perfusion at d14, with or without continuous Ang2, increasing CMF-R and PC-R. rAAV.Ang1 improved perfusion at d14, when combined with rAAV.Ang2 (d0-3), accompanied by an increased CMF-R and PC-R.

Conclusion

The combination of early vessel destabilization (Ang2 d0-3) and continuous Ang1 overexpression improves hindlimb perfusion, pointing to the importance of early vessel destabilization and subsequent vessel maturation for enhanced therapeutic neovascularization.  相似文献   

17.

Background

Heme oxygenase (HO) degrades cellular heme to carbon monoxide, iron and biliverdin. The HO-1 isoform is both inducible and cyto-protective during oxidative stress, inflammation and lung injury. However, little is known about its precise role and function in lung development. We hypothesized that HO-1 is required for mouse postnatal lung alveolar development and that vascular expression of HO-1 is essential and protective during postnatal alveolar development.

Methods

Neonatal lung development in wildtype and HO-1 mutant mice was evaluated by histological and molecular methods. Furthermore, these newborn mice were treated with postnatal dexamethasone (Dex) till postnatal 14 days, and evaluated for lung development.

Results

Compared to wildtype littermates, HO-1 mutant mice exhibited disrupted lung alveolar structure including simplification, disorganization and reduced secondary crest formation. These defects in alveolar development were more pronounced when these mice were challenged with Dex treatment. Expression levels of both vascular endothelial and alveolar epithelial markers were also further decreased in HO-1 mutants after Dex treatment.

Conclusions

These experiments demonstrate that HO-1 is required in normal lung development and that HO-1 disruption and dexamethasone exposure are additive in the disruption of postnatal lung growth. We speculate that HO-1 is involved in postnatal lung development through modulation of pulmonary vascular development.  相似文献   

18.
19.

Aim

To determine if there is a difference in serum zinc concentration between normoglycaemic, pre-diabetic and type-2 diabetic groups and if this is associated with pancreatic beta cell function and insulin sensitivity in the former 2 groups.

Method

Cross sectional study of a random sample of older community-dwelling men and women in Newcastle, New South Wales, Australia. Beta cell function, insulin sensitivity and insulin resistance were calculated for normoglycaemic and prediabetes participants using the Homeostasis Model Assessment (HOMA-2) calculator.

Result

A total of 452 participants were recruited for this study. Approximately 33% (N = 149) had diabetes, 33% (N = 151) had prediabetes and 34% (N = 152) were normoglycaemic. Homeostasis Model Assessment (HOMA) parameters were found to be significantly different between normoglycaemic and prediabetes groups (p<0.001). In adjusted linear regression, higher serum zinc concentration was associated with increased insulin sensitivity (p = 0.01) in the prediabetic group. There was also a significant association between smoking and worse insulin sensitivity.

Conclusion

Higher serum zinc concentration is associated with increased insulin sensitivity. Longitudinal studies are required to determine if low serum zinc concentration plays a role in progression from pre-diabetes to diabetes.  相似文献   

20.

Background

Type 2 diabetes is characterized by pancreatic beta-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that apoptosis signal-regulating kinase 1 (ASK1) is involved in beta-cell death in response to different stressors. In this study, we tested whether ASK1 deficiency protects beta-cells from glucolipotoxic conditions and cytokines treatment or from glucose homeostasis alteration induced by endotoxemia.

Methodology/Principal Findings

Insulin secretion was neither affected upon shRNA-mediated downregulation of ASK1 in MIN6 cells nor in islets from ASK1-deficient mice. ASK1 silencing in MIN6 cells and deletion in islets did not prevent the deleterious effect of glucolipotoxic conditions or cytokines on insulin secretion. However, it protected MIN6 cells from death induced by ER stress or palmitate and islets from short term caspase activation in response to cytokines. Moreover, endotoxemia induced by LPS infusion increased insulin secretion during hyperglycemic clamps but the response was similar in wild-type and ASK1-deficient mice. Finally, insulin sensitivity in the presence of LPS was not affected by ASK1-deficiency.

Conclusions/Significance

Our study demonstrates that ASK1 is not involved in beta-cell function and dysfunction but controls stress-induced beta-cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号