首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peters Plus syndrome is an autosomal recessive disorder characterized by anterior eye-chamber abnormalities, disproportionate short stature, and developmental delay. After detection of a microdeletion by array-based comparative genomic hybridization, we identified biallelic truncating mutations in the beta 1,3-galactosyltransferase-like gene (B3GALTL) in all 20 tested patients, showing that Peters Plus is a monogenic, primarily single-mutation syndrome. This finding is expected to put Peters Plus syndrome on the growing list of congenital malformation syndromes caused by glycosylation defects.  相似文献   

2.
A de novo complex chromosomal rearrangement is very rare but likely to be present in a child with developmental disabilities and physical alterations. A child presented in this study showed global developmental delay and some typical phenotypes. Initial karyotyping and FISH analysis in the patient showed an apparently de novo balanced translocation between chromosome 3 and 8, t(3;8)(q13.1;q24.2). Further analysis using multiplex ligation-dependent probe amplification and array-based comparative genomic hybridization revealed a cryptic microdeletion on 3p13 region. Nearly one-third of balanced rearrangements are reported to involve cryptic disruptions at breakpoints, however, the microdeletion of the proposita was present in non-translocated region of the chromosome 3. After careful reevaluation of the results, a pericentric inversion, inv(3)(p13q13.1) that induced deletion was revealed. The clinical features of developmental delay in cognition, language, and motor function and facial and physical phenotype of the proposita were similar to those found in the children with 3p13 deletion. This case shows that combined molecular cytogenetic techniques with routine karyotyping are very useful to identify subtle genomic changes associated with abnormal phenotypes.  相似文献   

3.
Lai AH  Brett MS  Chin WH  Lim EC  Ng JS  Tan EC 《Gene》2012,499(1):182-185
We report a girl with Rubinstein-Taybi syndrome (RSTS) who was found to have copy number loss on 16p13.3 by array-CGH. She has developmental delay and other features of RSTS including downslanting palpebral fissures, a prominent nose with the nasal septum extending below the alae nasi, broad thumbs and big toes, postaxial polydactyly of the right foot and constipation from birth. We report the junction sequence across the breakpoint region for a microdeletion in RSTS. The sequencing results also showed that the deletion was 81.4kb involving three genes DNASE 1, TRAP 1, and CREBBP.  相似文献   

4.
We have analyzed a recently described 22q13.3 microdeletion in a child with some overlapping features of the cytologically visible 22q13.3 deletion syndrome. Patient NT, who shows mild mental retardation and delay of expressive speech, was previously found to have a paternal microdeletion in the subtelomeric region of 22q. In order to characterize this abnormality further, we have constructed a cosmid/P1 contig covering the terminal 150 kb of 22q, which encompasses the 130-kb microdeletion. The microdeletion breakpoint is within the VNTR locus D22S163. The cloning of the breakpoint sequence revealed that the broken chromosome end was healed by the addition of telomeric repeats, indicating that the microdeletion is terminal. This is the first cloned terminal deletion breakpoint on a human chromosome other than 16p. The cosmid/P1 contig was mapped by pulsed-field gel electrophoresis analysis to within 120 kb of the arylsulfatase A gene, which places the contig in relation to genetic and physical maps of the chromosome. The acrosin gene maps within the microdeletion, approximately 70 kb from the telomere. With the distal end of chromosome 22q cloned, it is now possible to isolate genes that may be involved in the overlapping phenotype of this microdeletion and 22q13.3 deletion syndrome.  相似文献   

5.

Background

Microduplication at 17p13.3 and microdeletion at 21q22 are both rare chromosomal aberrations. The presence of both genomic imbalances in one patient has not been previously reported in literature. In this study, we performed a molecular diagnostic testing with a whole genome microarray on a 3-year-old boy with developmental delay, mental retardation and multiple malformations.

Methods

A routine G-banding karyotype analysis was performed using peripheral lymphocytes. Chromosome microarray analysis (CMA) was done using Affymetrix CytoScan™ HD array. Genomic imbalances were further confirmed by multiple ligation-dependent probe amplification (MLPA).

Results

The result of karyotyping was normal but CMA detected a 9.8 Mb microduplication at 17p13.3–13.1 (chr17: 1–9,875,545) and a 2.8 Mb microdeletion involving 21q22.3–qter (chr21: 45,239,077–48,097,372). The imbalances were due to a balanced translocation present in patient's mother. The patient was characterized with short stature, profound developmental delay, non-verbal, intellectual disability as well as craniofacial dysmorphism, subtle brain structural anomaly and sparse scalp hair.

Conclusions

This is the first patient reported with a combination of a microduplication at 17p13.3–13.1 and a microdeletion at 21q22.3–qter. Both genomic imbalances were undetected by conventional karyotyping but were delineated with CMA test. Synergistic effect from the two rare genomic imbalances is likely responsible for the severe clinical phenotypes observed in this patient.  相似文献   

6.
In the accompanying paper, a chromosomal localization of the Rubinstein-Taybi syndrome by cytogenetic investigations with fluorescence in situ hybridization techniques at chromosome 16p13.3 is described. We investigated 19 of these patients and their parents (a) to ascertain the parental origin of the chromosome with the deletion in families where such a deletion was detected, (b) to disclose whether uniparental disomy plays a role in etiology, and (c) to compare clinical features in patients with a deletion to those in individuals in whom deletions were not detectable. Molecular studies showed a copy of chromosome 16 from each parent in all 19 patients. Uniparental disomy was also excluded for five other chromosome arms known to be imprinted in mice. None of the probes used for determining the origin of the deleted chromosome proved to be informative. The clinical features were essentially the same in patients with and without visible deletion, with a possible exception for the incidence of microcephaly, angulation of thumbs and halluces, and partial duplication of the halluces. A small deletion at 16p13.3 may be found in some patients with Rubinstein-Taybi syndrome. Cytogenetically undetectable deletions, point mutations, mosaicism, heterogeneity, or phenocopy by a nongenetic cause are the most probable explanations for the absence of cytogenetic or molecular abnormalities in other patients with Rubinstein-Taybi syndrome.  相似文献   

7.

Key message

Hybrid plants and a high frequency of maternal haploids were obtained using an efficient wheatbarley hybridization system (with new genotype combinations) and confirmed by several cytological and molecular tools.

Abstract

An efficient hybridization system between wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) is presented on the basis of three new genotype combinations. A particularly high, 14 % frequency of plant regeneration per florets was achieved in the wheat–barley genotype combination of ‘Sichuan’ × ‘Morex’. The genome composition in 42 of the 95 plants regenerated by embryo rescue was determined using ploidy analysis, genomic in situ hybridization and the application of chromosome arm-specific molecular markers (SSR and STS). A high overall frequency (76 %) of maternal (wheat) haploids was observed in all the tests for all three cross combinations. A major implication of this observation is that this new hybridization system represents a useful tool to study the mechanism of uniparental chromosome elimination in cereals.  相似文献   

8.
Novel microdeletion syndromes detected by chromosome microarrays   总被引:2,自引:1,他引:1  
  相似文献   

9.
We report a molecular cytogenetic characterization of 17p13.3 deletion syndrome by array comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH) and quantitative polymerase chain reaction (qPCR) in a fetus with lissencephaly, corpus callosum dysgenesis, ventriculomegaly, microcephaly, intrauterine growth restriction (IUGR), polyhydramnios and single umbilical artery. aCGH analysis revealed a 3.17-Mb deletion at 17p13.3, or arr [hg19] 17p13.3 (0–3,165,530)×1. The qPCR assays revealed a maternal origin of the deletion. Metaphase FISH analysis detected the absence of the LIS1 probe signal on the aberrant chromosome 17. The karyotype was 46,XX,del(17)(p13.3). We review the literature of chromosome 17p13.3 deletion syndrome with prenatal findings and diagnosis, and suggest that prenatal ultrasound detection of central nervous system anomalies such as lissencephaly, corpus callosum dysgenesis/agenesis, ventriculomegaly and microcephaly associated with IUGR, polyhydramnios, congenital heart defects, abdominal wall defects and renal abnormalities should include a differential diagnosis of chromosome 17p13.3 deletion syndrome.  相似文献   

10.

Objective

The current study aimed to develop a reliable targeted array comparative genomic hybridization (aCGH) to detect microdeletions and microduplications in congenital conotruncal defects (CTDs), especially on 22q11.2 region, and for some other chromosomal aberrations, such as 5p15-5p, 7q11.23 and 4p16.3.

Methods

Twenty-seven patients with CTDs, including 12 pulmonary atresia (PA), 10 double-outlet right ventricle (DORV), 3 transposition of great arteries (TGA), 1 tetralogy of Fallot (TOF) and one ventricular septal defect (VSD), were enrolled in this study and screened for pathogenic copy number variations (CNVs), using Agilent 8 x 15K targeted aCGH. Real-time quantitative polymerase chain reaction (qPCR) was performed to test the molecular results of targeted aCGH.

Results

Four of 27 patients (14.8%) had 22q11.2 CNVs, 1 microdeletion and 3 microduplications. qPCR test confirmed the microdeletion and microduplication detected by the targeted aCGH.

Conclusion

Chromosomal abnormalities were a well-known cause of multiple congenital anomalies (MCA). This aCGH using arrays with high-density coverage in the targeted regions can detect genomic imbalances including 22q11.2 and other 10 kinds CNVs effectively and quickly. This approach has the potential to be applied to detect aneuploidy and common microdeletion/microduplication syndromes on a single microarray.  相似文献   

11.

Background

Benign infantile convulsions and paroxysmal dyskinesia are episodic cerebral disorders that can share common genetic bases. They can be co-inherited as one single autosomal dominant trait (ICCA syndrome); the disease ICCA gene maps at chromosome 16p12-q12. Despite intensive and conventional mutation screening, the ICCA gene remains unknown to date. The critical area displays highly complicated genomic architecture and is the site of deletions and duplications associated with various diseases. The possibility that the ICCA syndrome is related to the existence of large-scale genomic alterations was addressed in the present study.

Methodology/Principal Findings

A combination of whole genome and dedicated oligonucleotide array comparative genomic hybridization coupled with quantitative polymerase chain reaction was used. Low copy number of a region corresponding to a genomic variant (Variation_7105) located at 16p11 nearby the centromere was detected with statistical significance at much higher frequency in patients from ICCA families than in ethnically matched controls. The genomic variant showed no apparent difference in size and copy number between patients and controls, making it very unlikely that the genomic alteration detected here is ICCA-specific. Furthermore, no other genomic alteration that would directly cause the ICCA syndrome in those nine families was detected in the ICCA critical area.

Conclusions/Significance

Our data excluded that inherited genomic deletion or duplication events directly cause the ICCA syndrome; rather, they help narrowing down the critical ICCA region dramatically and indicate that the disease ICCA genetic defect lies very close to or within Variation_7105 and hence should now be searched in the corresponding genomic area and its surrounding regions.  相似文献   

12.
13.

Background  

In two-channel competitive genomic hybridization microarray experiments, the ratio of the two fluorescent signal intensities at each spot on the microarray is commonly used to infer the relative amounts of the test and reference sample DNA levels. This ratio may be influenced by systematic measurement effects from non-biological sources that can introduce biases in the estimated ratios. These biases should be removed before drawing conclusions about the relative levels of DNA. The performance of existing gene expression microarray normalization strategies has not been evaluated for removing systematic biases encountered in array-based comparative genomic hybridization (CGH), which aims to detect single copy gains and losses typically in samples with heterogeneous cell populations resulting in only slight shifts in signal ratios. The purpose of this work is to establish a framework for correcting the systematic sources of variation in high density CGH array images, while maintaining the true biological variations.  相似文献   

14.

Background

Glomerulocystic kidney disease is an uncommon type of cystic renal disease. It is characterized by cortical microsysts, which are represented by cystic dilatation of Bowman's spaces.

Case presentation

We describe a case of glomerulocystic disease in a neonate and another in an abortus associated with tracheo-oesophageal fistula and megacystic-megaureter syndrome. The kidney on autopsy was sponge-like and revealed presence of cysts corresponding to dilatations of Bowman's space microscopically. In these two cases, the Glomerulocystic Kidney Disease in one case corresponded to a sporadic form and, in the other, to a syndromic, non-heritable form of glomerulocystic kidney disease.

Conclusion

The associated anomalies in Glomerulocystic Kidney disease are well described in the literature. Two more new unrelated associations are described in this article.  相似文献   

15.
16.

Background  

DNA copy number aberration (CNA) is one of the key characteristics of cancer cells. Recent studies demonstrated the feasibility of utilizing high density single nucleotide polymorphism (SNP) genotyping arrays to detect CNA. Compared with the two-color array-based comparative genomic hybridization (array-CGH), the SNP arrays offer much higher probe density and lower signal-to-noise ratio at the single SNP level. To accurately identify small segments of CNA from SNP array data, segmentation methods that are sensitive to CNA while resistant to noise are required.  相似文献   

17.
We present prenatal diagnosis and array comparative genomic hybridization characterization of 3q26.31–q29 duplication and 9q34.3 microdeletion in a fetus with omphalocele, ventricular septal defect, increased nuchal translucency, abnormal first-trimester maternal screening and facial dysmorphism with distinct features of the 3q duplication syndrome and Kleefstra syndrome. The 26.61-Mb duplication of 3q26.31–q29 encompasses EPHB3, CLDN1 and CLDN16, and the 972-kb deletion of 9q34.3 encompasses EHMT1. We review the literature of partial trisomy 3q associated with omphalocele and discuss the genotype–phenotype correlation in this case.  相似文献   

18.
The combination of array-based comparative genomic hybridization (CGH) with fluorescence in situ hybridization utilizing custom-designed bacterial artificial chromosome (BAC) probes applied to tissue microarrays represents a powerful compendium of techniques–greatly enhancing the throughput of genomic analysis and subsequent target validation. Such approach can be automated at various levels and allows managing large volume of targets and samples in a few experiments. As such, this approach facilitates discovery, validation and implementation of findings in the process of identification of new diagnostic, prognostic and potentially therapeutic molecular markers.  相似文献   

19.
20.
Segmental duplications (SDs) are a class of long, repetitive DNA elements whose paralogs share a high level of sequence similarity with each other. SDs mediate chromosomal rearrangements that lead to structural variation in the general population as well as genomic disorders associated with multiple congenital anomalies, including the 7q11.23 (Williams–Beuren Syndrome, WBS), 15q13.3, and 16p12.2 microdeletion syndromes. Population-level characterization of SDs has generally been lacking because most techniques used for analyzing these complex regions are both labor and cost intensive. In this study, we have used a high-throughput technique to genotype complex structural variation with a single molecule, long-range optical mapping approach. We characterized SDs and identified novel structural variants (SVs) at 7q11.23, 15q13.3, and 16p12.2 using optical mapping data from 154 phenotypically normal individuals from 26 populations comprising five super-populations. We detected several novel SVs for each locus, some of which had significantly different prevalence between populations. Additionally, we localized the microdeletion breakpoints to specific paralogous duplicons located within complex SDs in two patients with WBS, one patient with 15q13.3, and one patient with 16p12.2 microdeletion syndromes. The population-level data presented here highlights the extreme diversity of large and complex SVs within SD-containing regions. The approach we outline will greatly facilitate the investigation of the role of inter-SD structural variation as a driver of chromosomal rearrangements and genomic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号