首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AU-rich elements (AREs) are regulatory sequences located in the 3' untranslated region of many short-lived mRNAs. AREs are recognized by ARE-binding proteins and cause rapid mRNA degradation. Recent reports claimed that the function of AREs may be--at least in part--relayed through the miRNA pathway. We have revisited this hypothesis using dicer knock-out mouse embryonic fibroblasts and cultured Drosophila cells. In contrast to the published results, we find no evidence for a general requirement of the miRNA pathway in the function of AREs. Endogenous ier3 mRNA, which is known to contain a functional ARE, was degraded rapidly at indistinguishable rates in wild type and dicer knock-out mouse embryonic fibroblasts. In cultured Drosophila cells, both ARE-containing GFP reporter mRNAs and the endogenous cecA1 mRNA were resistant to depletion of the mi/siRNA factors dcr-1, dcr-2, ago1 and ago2. Furthermore, the Drosophila miRNA originally proposed to recognize AU-rich elements, miR-289, is not detectably expressed in flies or cultured S2 cells. Even our attempts to overexpress this miRNA from its genomic hairpin sequence failed. Thus, this sequence cannot serve as link between the miRNA and the AU-rich element mediated silencing pathways. Taken together, our studies in mammalian and Drosophila cells strongly argue that AREs can function independently of miRNAs.  相似文献   

2.
3.
AU binding proteins recruit the exosome to degrade ARE-containing mRNAs.   总被引:45,自引:0,他引:45  
Inherently unstable mammalian mRNAs contain AU-rich elements (AREs) within their 3' untranslated regions. Although found 15 years ago, the mechanism by which AREs dictate rapid mRNA decay is not clear. In yeast, 3'-to-5' mRNA degradation is mediated by the exosome, a multisubunit particle. We have purified and characterized the human exosome by mass spectrometry and found its composition to be similar to its yeast counterpart. Using a cell-free RNA decay system, we demonstrate that the mammalian exosome is required for rapid degradation of ARE-containing RNAs but not for poly(A) shortening. The mammalian exosome does not recognize ARE-containing RNAs on its own. ARE recognition requires certain ARE binding proteins that can interact with the exosome and recruit it to unstable RNAs, thereby promoting their rapid degradation.  相似文献   

4.
5.
6.
7.
AU-rich elements and associated factors: are there unifying principles?   总被引:13,自引:4,他引:9  
The control of mRNA stability is an important process that allows cells to not only limit, but also rapidly adjust, the expression of regulatory factors whose over expression may be detrimental to the host organism. Sequence elements rich in A and U nucleotides or AU-rich elements (AREs) have been known for many years to target mRNAs for rapid degradation. In this survey, after briefly summarizing the data on the sequence characteristics of AREs, we present an analysis of the known ARE-binding proteins (ARE-BP) with respect to their mRNA targets and the consequences of their binding to the mRNA. In this analysis, both the changes in mRNA stability and the lesser studied effects on translation are considered. This analysis highlights the multitude of mRNAs bound by one ARE-BP and conversely the large number of ARE-BP that associate with any particular ARE-containing mRNA. This situation is discussed with respect to functional redundancies or antagonisms. The potential relationship between mRNA stability and translation is also discussed. Finally, we present several hypotheses that could unify the published data and suggest avenues for future research.  相似文献   

8.
Involvement of microRNA in AU-rich element-mediated mRNA instability   总被引:42,自引:0,他引:42  
Jing Q  Huang S  Guth S  Zarubin T  Motoyama A  Chen J  Di Padova F  Lin SC  Gram H  Han J 《Cell》2005,120(5):623-634
AU-rich elements (AREs) in the 3' untranslated region (UTR) of unstable mRNAs dictate their degradation. An RNAi-based screen performed in Drosophila S2 cells has revealed that Dicer1, Argonaute1 (Ago1) and Ago2, components involved in microRNA (miRNA) processing and function, are required for the rapid decay of mRNA containing AREs of tumor necrosis factor-alpha. The requirement for Dicer in the instability of ARE-containing mRNA (ARE-RNA) was confirmed in HeLa cells. We further observed that miR16, a human miRNA containing an UAAAUAUU sequence that is complementary to the ARE sequence, is required for ARE-RNA turnover. The role of miR16 in ARE-RNA decay is sequence-specific and requires the ARE binding protein tristetraprolin (TTP). TTP does not directly bind to miR16 but interacts through association with Ago/eiF2C family members to complex with miR16 and assists in the targeting of ARE. miRNA targeting of ARE, therefore, appears to be an essential step in ARE-mediated mRNA degradation.  相似文献   

9.
Labile mRNAs that encode cytokine and immediate-early gene products often contain AU-rich sequences within their 3' untranslated region (UTR). These AU-rich sequences appear to be key determinants of the short half-lives of these mRNAs, although the sequence features of these elements and the mechanism by which they target mRNAs for rapid decay have not been fully defined. We have examined the features of AU-rich elements (AREs) that are crucial for their function as determinants of mRNA instability in mammalian cells by testing the ability of various mutant c-fos AREs and synthetic AREs to direct rapid mRNA deadenylation and decay when inserted within the 3' UTR of the normally stable beta-globin mRNA. Evidence is presented that the pentamer AUUUA, which previously was suggested to be the minimal determinant of instability present in mammalian AREs, cannot direct rapid mRNA deadenylation and decay. Instead, the nonomer UUAUUUAUU is the elemental AU-rich sequence motif that destabilizes mRNA. Removal of one uridine residue from either end of the nonamer (UUAUUUAU or UAUUUAUU) results in a decrease of potency of the element, while removal of a uridine residue from both ends of the nonamer (UAUUUAU) eliminates detectable destabilizing activity. The inclusion of an additional uridine residue at both ends of the nonamer (UUUAUUUAUUU) does not further increase the efficacy of the element. Taken together, these findings suggest that the nonamer UUAUUUAUU is the minimal AU-rich motif that effectively destabilizes mRNA. Additional ARE potency is achieved by combining multiple copies of this nonamer in a single mRNA 3' UTR. Furthermore, analysis of poly(A) shortening rates for ARE-containing mRNAs reveals that the UUAUUUAUU sequence also accelerates mRNA deadenylation and suggests that the UUAUUUAUU motif targets mRNA for rapid deadenylation as an early step in the mRNA decay process.  相似文献   

10.
11.
An important determinant for the expression level of cytokines and proto-oncogenes is the rate of degradation of their mRNAs. AU-rich sequence elements (AREs) in the 3(') untranslated regions have been found to impose rapid decay of these mRNAs. ARE-containing mRNAs can be stabilized in response to external signals which activate the p38 MAP kinase cascade including the p38 MAP kinase substrate MAPKAP kinase 2 (MK2). In an attempt to identify components downstream of MK2 in this pathway we analyzed several proteins which selectively interact with the ARE of GM-CSF mRNA. One of them, the cytoplasmic poly(A)-binding protein PABP1, co-migrated with a protein that showed prominent phosphorylation by recombinant MK2. Phosphorylation by MK2 was confirmed using PABP1 purified by affinity chromatography on poly(A) RNA. The selective interaction with an ARE-containing RNA and the phosphorylation by MK2 suggest that PABP1 plays a regulatory role in ARE-dependent mRNA decay and its modulation by the p38 MAP kinase cascade.  相似文献   

12.
RNase-L mediates critical cellular functions including antiviral, pro-apoptotic, and tumor suppressive activities; accordingly, its expression must be tightly regulated. Little is known about the control of RNASEL expression; therefore, we examined the potential regulatory role of a conserved 3'-untranslated region (3'-UTR) in its mRNA. The 3'-UTR mediated a potent decrease in the stability of RNase-L mRNA, and of a chimeric beta-globin-3'-UTR reporter mRNA. AU-rich elements (AREs) are cis-acting regulatory regions that modulate mRNA stability. Eight AREs were identified in the RNase-L 3'-UTR, and deletion analysis identified positive and negative regulatory regions associated with distinct AREs. In particular, AREs 7 and 8 served a strong positive regulatory function. HuR is an ARE-binding protein that stabilizes ARE-containing mRNAs, and a predicted HuR binding site was identified in the region comprising AREs 7 and 8. Co-transfection of HuR and RNase-L enhanced RNase-L expression and mRNA stability in a manner that was dependent on this 3'-UTR region. Immunoprecipitation demonstrated that RNase-L mRNA associates with a HuR containing complex in intact cells. Activation of endogenous HuR by cell stress, or during myoblast differentiation, increased RNase-L expression, suggesting that RNase-L mRNA is a physiologic target for HuR. HuR-dependent regulation of RNase-L enhanced its antiviral activity demonstrating the functional significance of this regulation. These findings identify a novel mechanism of RNase-L regulation mediated by its 3'-UTR.  相似文献   

13.
The CCCH family of tandem zinc finger proteins has recently been shown to promote the turnover of certain mRNAs containing class II AU-rich elements (AREs). In the case of one member of this family, tristetraprolin (TTP), absence of the protein in knockout mice leads to stabilization of two mRNAs containing AREs of this type, those encoding tumor necrosis factor alpha (TNFalpha) and granulocyte-macrophage colony-stimulating factor. To begin to decipher the mechanism by which these zinc finger proteins stimulate the breakdown of this class of mRNAs, we co-transfected TTP and its related CCCH proteins into 293 cells with vectors encoding full-length TNFalpha, granulocyte-macrophage colony-stimulating factor, and interleukin-3 mRNAs. Co-expression of the CCCH proteins caused the rapid turnover of these ARE-containing mRNAs and also promoted the accumulation of stable breakdown intermediates that were truncated at the 3'-end of the mRNA, even further 5' than the 5'-end of the poly(A) tail. To determine whether an intact poly(A) tail was necessary for TTP to promote this type of mRNA degradation, we inserted the TNFalpha ARE into a nonpolyadenylated histone mRNA and also attached a histone 3'-end-processing sequence to the 3'-end of nonpolyadenylated interleukin-3 and TNFalpha mRNAs. In all three cases, TTP stimulated the turnover of the ARE-containing mRNAs, despite the demonstrated absence of a poly(A) tail. These studies indicate that members of this class of CCCH proteins can promote class II ARE-containing mRNA turnover even in the absence of a poly(A) tail, suggesting that the processive removal of the poly(A) tail may not be required for this type of CCCH protein-stimulated mRNA turnover.  相似文献   

14.
An important emerging theme is that heterogeneous nuclear ribonucleoproteins (hnRNPs) not only function in the nucleus but also control the fates of mRNAs in the cytoplasm. Here, we show that hnRNP D plays a versatile role in cytoplasmic mRNA turnover by functioning as a negative regulator in an isoform-specific and cell-type-dependent manner. We found that hnRNP D discriminates among the three classes of AU-rich elements (AREs), most effectively blocking rapid decay directed by class II AREs found in mRNAs encoding cytokines. Our experiments identified the overlapping AUUUA motifs, one critical characteristic of class II AREs, to be the key feature recognized in vivo by hnRNP D for its negative effect on ARE-mediated mRNA decay. The four hnRNP D isoforms, while differing in their ability to block decay of ARE-containing mRNAs, all potently inhibited mRNA decay directed by another mRNA cis element that shares no sequence similarity with AREs, the purine-rich c-fos protein-coding region determinant of instability. Further experiments indicated that different mechanisms underlie the inhibitory effect of hnRNP D on the two distinct mRNA decay pathways. Our study identifies a potential mechanism by which cytoplasmic mRNA turnover can be differentially and selectively regulated by hnRNP D isoforms in mammalian cells. Our results support the notion that hnRNP D serves as a key factor broadly involved in general mRNA decay.  相似文献   

15.
Several ligands for Toll IL-1R (TIR) family are known to promote stabilization of a subset of short-lived mRNAs containing AU-rich elements (AREs) in their 3' untranslated regions. It is now evident however, that members of the TIR family may use distinct intracellular signaling pathways to achieve a spectrum of biological end points. Using human embryonic kidney 293 cells transfected to express different TIRs we now report that signals initiated through IL-1R1 or TLR4 but not TLR3 can promote the stabilization of unstable chemokine mRNAs. Similar results were obtained when signaling from endogenous receptors was examined using a mouse endothelial cell line (H5V). The ability of TIR family members to stabilize ARE-containing mRNAs results from their differential use of signaling adaptors MyD88, MyD88 adaptor-like protein, Toll receptor IFN-inducing factor (Trif), and Trif-related adaptor molecule. Overexpression of MyD88 or MyD88 adaptor-like protein was able to promote enhanced stability of ARE-containing mRNA, whereas Trif and Trif-related adaptor molecule exhibited markedly reduced capacity. Hence the ability of TIRs to signal stabilization of mRNA appears to be linked to the MyD88-dependent signaling pathway.  相似文献   

16.
X C Fan  J A Steitz 《The EMBO journal》1998,17(12):3448-3460
The messenger RNAs of many proto-oncogenes, cytokines and lymphokines are targeted for rapid degradation through AU-rich elements (AREs) located in their 3'' untranslated regions (UTRs). HuR, a ubiquitously expressed member of the Elav family of RNA binding proteins, exhibits specific affinities for ARE-containing RNA sequences in vitro which correlate with their in vivo decay rates, thereby implicating HuR in the ARE-mediated degradation pathway. We have transiently transfected HuR into mouse L929 cells and observed that overexpression of HuR enhances the stability of beta-globin reporter mRNAs containing either class I or class II AREs. The increase in mRNA stability parallels the level of HuR overexpression, establishing an in vivo role for HuR in mRNA decay. Furthermore, overexpression of HuR deletion mutants lacking RNA recognition motif 3 (RRM 3) does not exert a stabilizing effect, indicating that RRM 3 is important for HuR function. We have also developed polyclonal anti-HuR antibodies. Immunofluorescent staining of HeLa and L929 cells using affinity-purified anti-HuR antibody shows that both endogenous and overexpressed HuR proteins are localized in the nucleus. By forming HeLa-L929 cell heterokaryons, we demonstrate that HuR shuttles between the nucleus and cytoplasm. Thus, HuR may initially bind to ARE-containing mRNAs in the nucleus and provide protection during and after their export to the cytoplasmic compartment.  相似文献   

17.
18.
Inherently unstable mRNAs contain AU-rich elements (AREs) in their 3' untranslated regions that act as mRNA stability determinants by interacting with ARE binding proteins (ARE-BPs). The mechanisms underlying the function of ARE and ARE-BP interactions in promoting mRNA decay are not fully understood. Here, we demonstrate that KSRP, a KH domain-containing ARE-BP, is an essential factor for ARE-directed mRNA decay. Some of the KH motifs (KHs) of KSRP directly mediate RNA binding, mRNA decay, and interactions with the exosome and poly(A) ribonuclease (PARN). The ability of KHs to promote mRNA decay correlates with their ability to bind the ARE and associate with RNA-degrading enzymes. Thus, KHs promote rapid mRNA decay by recruiting degradation machinery to ARE-containing mRNAs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号