首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-throughput screening (HTS) assays enable the testing of large numbers of chemical substances for activity in diverse areas of biology. The biological responses measured in HTS assays span isolated biochemical systems containing purified receptors or enzymes to signal transduction pathways and complex networks functioning in cellular environments. This Review addresses factors that need to be considered when implementing assays for HTS and is aimed particularly at investigators new to this field. We discuss assay design strategies, the major detection technologies and examples of HTS assays for common target classes, cellular pathways and simple cellular phenotypes. We conclude with special considerations for configuring sensitive, robust, informative and economically feasible HTS assays.  相似文献   

2.
Large scale cell biological experiments are beginning to be applied as a systems-level approach to decipher mechanisms that govern cellular function in health and disease. The use of automated microscopes combined with digital imaging, machine learning and other analytical tools has enabled high-content screening (HCS) in a variety of experimental systems. Successful HCS screens demand careful attention to assay development, data acquisition methods and available genomic tools. In this minireview, we highlight developments in this field pertaining to yeast cell biology and discuss how we have combined HCS with methods for automated yeast genetics (synthetic genetic array (SGA) analysis) to enable systematic analysis of cell biological phenotypes in a variety of genetic backgrounds.  相似文献   

3.
Background. Blood vessel formation is important for many physiological and pathological processes and is therefore a critical target for drug development. Inhibiting angiogenesis to starve a tumour or promoting ‘normalization’ of tumour vasculature in order to facilitate delivery of anticancer drugs are both areas of active research. Recapitulation of vessel formation by human cells in vitro allows the investigation of cell—cell and cell—matrix interactions in a controlled environment and is therefore a crucial step in developing HCS (high content screening) and HTS (high throughput screening) assays to search for modulators of blood vessel formation. HUVECs (human umbilical‐vein endothelial cells) exemplify primary cells used in angiogenesis assays. However, primary cells have significant limitations that include phenotypic decay and/or senescence by six to eight passages in culture, making stable integration of fluorescent markers and large‐scale expansion for HTS problematic. To overcome these limitations for HTS, we developed a novel angiogenic model system that employs stable fluorescent endothelial cell lines based on immortalized HMECs (human microvascular endothelial cell). We then evaluated HMEC cultures, both alone and co‐cultured with an EMC (epicardial mesothelial cell) line that contributes vascular smooth muscle cells, to determine the suitability for HTS or HCS. Results. The endothelial and epicardial lines were engineered to express a panel of nuclear‐ and cytoplasm‐localized fluorescent proteins to be mixed and matched to suit particular experimental goals. HMECs retained their angiogenic potential and stably expressed fluorescent proteins for at least 13 passages after transduction. Within 8 h after plating on Matrigel, the cells migrated and coalesced into networks of vessel‐like structures. If co‐cultured with EMCs, the branches formed cylindrical‐shaped structures of HMECs surrounded by EMC derivatives reminiscent of vessels. Network formation measurements revealed responsiveness to media composition and control compounds. Conclusions. HMEC‐based lines retain most of the angiogenic features of primary endothelial cells and yet possess long‐term stability and ease of culture, making them intriguing candidates for large‐scale primary HCS and HTS (of ~10000–1000000 molecules). Furthermore, inclusion of EMCs demonstrates the feasibility of using epicardial‐derived cells, which normally contribute to smooth muscle, to model large vessel formation. In summary, the immortalized fluorescent HMEC and EMC lines and straightforward culture conditions will enable assay development for HCS of angiogenesis.  相似文献   

4.
Neuronal ceroid lipofuscinoses, also collectively known as Batten disease, are a group of rare monogenic disorders caused by mutations in at least 13 different genes. They are characterized by the accumulation of lysosomal storage material and progressive neurological deterioration with dementia, epilepsy, retinopathy, motor disturbances, and early death [1]. Although the identification of disease-causing genes provides an important step for understanding the molecular mechanisms underlying neuronal ceroid lipofuscinoses, compared to other diseases, obstacles to the development of therapies for these rare diseases include less extensive physiopathology knowledge, limited number of patients to test treatments, and poor commercial interest from the industry. Current therapeutic strategies include enzyme replacement therapies, gene therapies targeting the brain and the eye, cell therapies, and pharmacological drugs that could modulate defective molecular pathways. In this review, we will focus in the emerging therapies based in the identification of small-molecules. Recent advances in high- throughput and high-content screening (HTS and HCS) using relevant cell-based assays and applying automation and imaging analysis algorithms, will allow the screening of a large number of compounds in lesser time. These approaches are particularly useful for drug repurposing for Batten disease, that takes the advantage to search for compounds that have already been tested in humans, thereby reducing significantly the resources needed for translation to clinics.  相似文献   

5.
Genome-wide, cell-based screens using high-content screening (HCS) techniques and automated fluorescence microscopy generate thousands of high-content images that contain an enormous wealth of cell biological information. Such screens are key to the analysis of basic cell biological principles, such as control of cell cycle and cell morphology. However, these screens will ultimately only shed light on human disease mechanisms and potential cures if the analysis can keep up with the generation of data. A fundamental step toward automated analysis of high-content screening is to construct a robust platform for automatic cellular phenotype identification. The authors present a framework, consisting of microscopic image segmentation and analysis components, for automatic recognition of cellular phenotypes in the context of the Rho family of small GTPases. To implicate genes involved in Rac signaling, RNA interference (RNAi) was used to perturb gene functions, and the corresponding cellular phenotypes were analyzed for changes. The data used in the experiments are high-content, 3-channel, fluorescence microscopy images of Drosophila Kc167 cultured cells stained with markers that allow visualization of DNA, polymerized actin filaments, and the constitutively activated Rho protein Rac(V12). The performance of this approach was tested using a cellular database that contained more than 1000 samples of 3 predefined cellular phenotypes, and the generalization error was estimated using a cross-validation technique. Moreover, the authors applied this approach to analyze the whole high-content fluorescence images of Drosophila cells for further HCS-based gene function analysis.  相似文献   

6.
Until now, various stimuli as well as serial passaging have been known to induce cellular senescence in normal human diploid fibroblasts. However, in many cases, we have encountered difficulty in quantitatively analyzing the cellular senescence phenotypes of senescent cells in a physiological condition. High-content screening (HCS)-based image analysis is becoming an important and powerful research tool. In the present study, an automated and quantitative cellular image-analysis system was employed to quantify the cellular senescence phenotypes induced in normal human diploid fibroblasts, TIG-1 cells, and found to be a powerful tool in the cellular senescence study.  相似文献   

7.
High-throughput screening (HTS) has become an important part of drug discovery at most pharmaceutical and many biotechnology companies worldwide, and use of HTS technologies is expanding into new areas. Target validation, assay development, secondary screening, ADME/Tox, and lead optimization are among the areas in which there is an increasing use of HTS technologies. It is becoming fully integrated within drug discovery, both upstream and downstream, which includes increasing use of cell-based assays and high-content screening (HCS) technologies to achieve more physiologically relevant results and to find higher quality leads. In addition, HTS laboratories are continually evaluating new technologies as they struggle to increase their success rate for finding drug candidates. The material in this article is based on a 900-page HTS industry report involving 54 HTS directors representing 58 HTS laboratories and 34 suppliers.  相似文献   

8.
The zebrafish, Danio rerio, a small, tropical freshwater species native to Pakistan and India, has become a National Institutes of Health-sanctioned model organism and, due to its many advantages as an experimental vertebrate, it has garnered intense interest from the world's scientific community. Some have labeled the zebrafish, the "vertebrate Drosophila," due to its genetic tractability, small size, low cost, and rapid development. The transparency of the embryo, external development, and the many hundreds of mutant and transgenic lines available add to the allure. Now it appears, the zebrafish can be used for high-throughput screening (HTS) of drug libraries in the discovery process of promising new therapeutics. In this review, various types of screening methods are briefly outlined, as are a variety of screens for different disease models, to highlight the range of zebrafish HTS possibilities. High-content screening (HCS) has been available for cell-based screens for some time and, very recently, HCS is being adapted for the zebrafish. This will allow analysis, at high resolution, of drug effects on whole vertebrates; thus, whole body effects as well as those on specific organs and tissues may be determined.  相似文献   

9.
Cell-based high-content screening of small-molecule libraries   总被引:1,自引:0,他引:1  
Advanced microscopy and the corresponding image analysis have been developed in recent years into a powerful tool for studying molecular and morphological events in cells and tissues. Cell-based high-content screening (HCS) is an upcoming methodology for the investigation of cellular processes and their alteration by multiple chemical or genetic perturbations. Multiparametric characterization of responses to such changes can be analyzed using intact live cells as reporter. These disturbances are screened for effects on a variety of molecular and cellular targets, including subcellular localization and redistribution of proteins. In contrast to biochemical screening, they detect the responses within the context of the intercellular structural and functional networks of normal and diseased cells, respectively. As cell-based HCS of small-molecule libraries is applied to identify and characterize new therapeutic lead compounds, large pharmaceutical companies are major drivers of the technology and have already shown image-based screens using more than 100,000 compounds.  相似文献   

10.
The simplicity of the CRISPR/Cas9 system of genome engineering has opened up the possibility of performing genome-wide targeted mutagenesis in cell lines,enabling screening for cellular phenotypes resulting from genetic aberrations.Drosophila cells have proven to be highly effective in identifying genes involved in cellular processes through similar screens using partial knockdown by RNAi.This is in part due to the lower degree of redundancy between genes in this organism,whilst still maintaining highly conserved gene networks and orthologs of many human disease-causing genes.The ability of CRISPR to generate genetic loss of function mutations not only increases the magnitude of any effect over currently employed RNAi techniques,but allows analysis over longer periods of time which can be critical for certain phenotypes.In this study,we have designed and built a genome-wide CRISPR library covering 13,501 genes,among which 8989 genes are targeted by three or more independent single guide RNAs(sg RNAs).Moreover,we describe strategies to monitor the population of guide RNAs by high throughput sequencing(HTS).We hope that this library will provide an invaluable resource for the community to screen loss of function mutations for cellular phenotypes,and as a source of guide RNA designs for future studies.  相似文献   

11.
The use of high‐throughput screening (HTS) techniques has long been employed by the pharmaceutical industry to increase discovery rates for new drugs that could be useful for disease treatment, yet this technology has only been minimally applied in other applications such as in tissue regeneration. In this work, an assay for the osteogenic differentiation of human mesenchymal stem cells (hMSCs) was developed and used to screen a library of small molecules for their potential as either promoters or inhibitors of osteogenesis, based on levels of alkaline phosphatase activity and cellular viability. From a library of 1,040 molecules, 36 promoters, and 20 inhibitors were identified as hits based on statistical criteria. Osteopromoters from this library were further investigated using standard culture techniques and a wider range of outcomes to verify that these compounds drive cellular differentiation. Several hits led to some improvement in the expression of alkaline phosphatase, osteogenic gene expression, and matrix mineralization by hMSCs when compared to the standard dexamethasone supplemented media and one molecule was investigated in combination with a recently identified biodegradable and osteoconductive polymer. This work illustrates the ability of HTS to more rapidly identify potential molecules to control stem cell differentiation. Biotechnol. Bioeng. 2011; 108:163–174. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
Cell-based assays for G-protein-coupled receptor (GPCR) activation applied in high-throughput screening (HTS) monitor various readouts for second messengers or intracellular effectors. Recently, our understanding of diverging signaling pathways downstream of receptor activation and the capability of small molecules to selectively modulate signaling routes has increased substantially, underlining the importance of selecting appropriate readouts in cellular functional screens. To minimize the rate of false negatives in large-scale screening campaigns, it is crucial to maximize the chance of a ligand being detected, and generally applicable methods for detecting multiple analytes from a single well might serve this purpose. The few assays developed so far based on multiplexed GPCR readouts are limited to only certain applications and usually rely on genetic manipulations hindering screening in native or native-like cellular systems. Here we describe a more generally applicable and HTS-compatible homogeneous assay based on the combination of fluorometric detection of [Ca2+] with subsequent homogeneous time-resolved fluorescence (HTRF) cAMP readout in the same well. Besides describing development and validation of the assay, using a cell line recombinantly expressing the human PTH1 receptor screening of a small library is also presented, demonstrating the robustness and HTS compatibility of the novel paradigm.  相似文献   

13.
Recently, high-throughput screening (HTS) has become the mainstream technique for drug discovery. Compounds that are synthesized by combinatorial chemistry might be more suitable than natural products to apply to HTS, because the purification procedure is a drawback of using natural products. Nevertheless, natural products remain an extremely important source of drugs. To overcome the demerits of natural products, we are constructing the RIKEN Natural Products Depository (NPDepo) that is focused primarily on microbial metabolites. In this review, I describe (i) engineering pathways for biosynthetic gene clusters of microbial metabolites, (ii) construction of fraction libraries of microbial metabolites, and (iii) the development of a new screening system using a chemical array and a protein library produced by GLORIA.  相似文献   

14.
Nicotinamide adenine dinucleotide (NAD) plays a crucial role in many cellular processes. As the rate-limiting enzyme of the predominant NAD biosynthesis pathway in mammals, nicotinamide phosphoribosyltransferase (Nampt) regulates the cellular NAD level. Tumor cells are more sensitive to the NAD levels, making them more susceptible to Nampt inhibition than their nontumorigenic counterparts. Experimental evidence has indicated that Nampt might have proangiogenic activity and supports the growth of some tumors, so Nampt inhibitors may be promising as antitumor agents. However, only four Nampt inhibitors have been reported, and no high-throughput screening (HTS) strategy for Nampt has been proposed to date, largely limiting the drug discovery targeting Nampt. Therefore, the development of a robust HTS strategy for Nampt is both imperative and significant. Here we developed a fluorometric method for a Nampt activity assay by measuring the fluorescence of nicotinamide mononucleotide (NMN) derivative resulting from the enzymatic product NMN through simple chemical reactions. Then we set up an HTS system after thorough optimizations of this method and validated that it is feasible and effective through a pilot screening on a small library. This HTS system should expedite the discovery of Nampt inhibitors as antitumor drug candidates.  相似文献   

15.
Botulinum neurotoxin (BoNT) is a potent and potentially lethal bacterial toxin that binds to host motor neurons, is internalized into the cell, and cleaves intracellular proteins that are essential for neurotransmitter release. BoNT is comprised of a heavy chain (HC), which mediates host cell binding and internalization, and a light chain (LC), which cleaves intracellular host proteins essential for acetylcholine release. While therapies that inhibit toxin binding/internalization have a small time window of administration, compounds that target intracellular LC activity have a much larger time window of administrations, particularly relevant given the extremely long half-life of the toxin. In recent years, small molecules have been heavily analyzed as potential LC inhibitors based on their increased cellular permeability relative to larger therapeutics (peptides, aptamers, etc.). Lead identification often involves high-throughput screening (HTS), where large libraries of small molecules are screened based on their ability to modulate therapeutic target function. Here we describe a FRET-based assay with a commercial BoNT/A LC substrate and recombinant LC that can be automated for HTS of potential BoNT inhibitors. Moreover, we describe a manual technique that can be used for follow-up secondary screening, or for comparing the potency of several candidate compounds.  相似文献   

16.
The Zika virus (ZIKV) and dengue virus (DENV) flaviviruses exhibit similar replicative processes but have distinct clinical outcomes. A systematic understanding of virus–host protein–pro-tein interaction networks can reveal cellular pathways critical to viral replication and disease patho-genesis. Here we employed three independent systems biology approaches toward this goal. First, protein array analysis of direct interactions between individual ZIKV/DENV viral proteins and 20,240 human proteins revealed multiple conserved cellular pathways and protein complexes, including proteasome complexes. Second, an RNAi screen of 10,415 druggable genes identified the host proteins required for ZIKV infection and uncovered that proteasome proteins were crucial in this process. Third, high-throughput screening of 6016 bioactive compounds for ZIKV inhibition yielded 134 effective compounds, including six proteasome inhibitors that suppress both ZIKV and DENV replication. Integrative analyses of these orthogonal datasets pinpoint proteasomes as crit-ical host machinery for ZIKV/DENV replication. Our study provides multi-omics datasets for fur-ther studies of flavivirus–host interactions, disease pathogenesis, and new drug targets.  相似文献   

17.
18.
Jiang X  Liu B  Jiang J  Zhao H  Fan M  Zhang J  Fan Z  Jiang T 《FEBS letters》2008,582(17):2549-2554
Similar disease phenotypes are engendered as a result of the modular nature of gene networks; thus we hypothesized that all human genetic disease phenotypes appear in similar modular styles. Network representations of phenotypes make it possible to explore this hypothesis. We investigated the modularity of a network of genetic disease phenotypes. We computationally extracted phenotype modules and found that the modularity is well correlated with a physiological classification of human diseases. We also found correlations between the modularity and functional genomics as well as its connection to drug-target associations.  相似文献   

19.
BACKGROUND: The elucidation of the molecular pathways from the 20-40.000 genes of the sequenced human genome via investigation of genetic networks and molecular pathways up to the cellular and organismal phenotypes is highly complex and time consuming. STRATEGY AND GOALS: The proposed upside-down research strategy of a human cytome project accesses the expressed molecular cell phenotypes by differential screening, for example of diseased versus healthy, or undifferentiated versus differentiated cells to obtain information on disease or differentiation related molecular hotspots at the single cell level. The genome serves as inventory of the biomolecular capacities of organisms while the mechanisms of genome realisation are initially entirely bypassed. Detected molecular hotspots are further investigated by backward directed systems biology, including molecular pathway modelling to elucidate disease related molecular pathways. New drug targets may be identified to specifically influence such pathways. Differential screening provides, in addition, individualized disease course predictions for everyday medicine, in form of "predictive medicine by cytomics." The early recognition of future disease complications enables an immediate application of preventive therapies. This is likely to lower disease related irreversible tissue destruction and adverse drug reactions and will allow to individually optimize patient therapy. OUTLOOK: Immediate medical use, facilitated access to the detection of new drug targets, increased research speed and the stimulation for advanced technological developments represent major driving forces for the efforts to establish a human cytome project.  相似文献   

20.
Nixon RA  Yang DS  Lee JH 《Autophagy》2008,4(5):590-599
Neuronal survival requires continuous lysosomal turnover of cellular constituents delivered by autophagy and endocytosis. Primary lysosomal dysfunction in inherited congenital "lysosomal storage" disorders is well known to cause severe neurodegenerative phenotypes associated with accumulations of lysosomes and autophagic vacuoles (AVs). Recently, the number of inherited adult-onset neurodegenerative diseases caused by proteins that regulate protein sorting and degradation within the endocytic and autophagic pathways has grown considerably. In this Perspective, we classify a group of neurodegenerative diseases across the lifespan as disorders of lysosomal function, which feature extensive autophagic-endocytic-lysosomal neuropathology and may share mechanisms of neurodegeneration related to degradative failure and lysosomal destabilization. We highlight Alzheimer's disease as a disease within this group and discuss how each of the genes and other risk factors promoting this disease contribute to progressive lysosomal dysfunction and neuronal cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号