首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Summary Optimum conditions for plant regeneration from cultured leaf explants were ascertained for eight different wild tomato (Lycopersicon) species and two closely relatedSolanum species. Of the eight media tested, basal MS medium supplemented with 5 μM of the cytokinin 6-benzyladenine proved to be the best overall regeneration medium. Regeneration frequency varied significantly between species with maximum frequency of regeneration observed forL. chilense, L. peruvianum, andS. lycopersicoides.  相似文献   

2.
The response of the antioxidative systems of leaf cell mitochondria and peroxisomes of the cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species Lycopersicon pennellii (Lpa) to NaCl 100 mM stress was investigated. Salt-dependent oxidative stress was evident in Lem mitochondria as indicated by their raised levels of lipid peroxidation and H2O2 content whereas their reduced ascorbate and reduced glutathione contents decreased. Concomitantly, SOD activity decreased whereas APX and GPX activities remained at control level. In contrast, the mitochondria of salt-treated Lpa did not exhibit salt-induced oxidative stress. In their case salinity induced an increase in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione-dependent peroxidase (GPX). Lpa peroxisomes exhibited increased SOD, APX, MDHAR and catalase activity and their lipid peroxidation and H2O2 levels were not affected by the salt treatment. The activities of all these enzymes remained at control level in peroxisomes of salt-treated Lem plants. The salt-induced increase in the antioxidant enzyme activities in the Lpa plants conferred cross-tolerance towards enhanced mitochondrial and peroxisomal reactive oxygen species production imposed by salicylhydroxamic acid (SHAM) and 3-amino-1,2,4-triazole (3-AT), respectively.  相似文献   

3.
The wild currant tomato Solanum pimpinellifolium inhabits a wide range of abiotic habitats across its native range of Ecuador and Peru. Although it has served as a key genetic resource for the improvement of domestic cultivars, little is known about the genetic basis of traits underlying local adaptation in this species, nor what abiotic variables are most important for driving differentiation. Here we use redundancy analysis (RDA) and other multivariate statistical methods (structural equation modelling [SEM] and generalized dissimilarity modelling [GDM]) to quantify the relationship of genomic variation (6,830 single nucleotide polymorphisms [SNPs]) with climate and geography, among 140 wild accessions. RDA, SEM and GDM each identified environment as explaining more genomic variation than geography, suggesting that local adaptation to heterogeneous abiotic habitats may be an important source of genetic diversity in this species. Environmental factors describing temporal variation in precipitation and evaporative demand explained the most SNP variation among accessions, indicating that these forces may represent key selective agents. Lastly, by studying how SNP–environment associations vary throughout the genome (44,064 SNPs), we mapped the location and investigated the functions of loci putatively contributing to climatic adaptations. Together, our findings indicate an important role for selection imposed by the abiotic environment in driving genomic differentiation between populations.  相似文献   

4.
  • Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle‐leaved) and observed tolerance to shade, when growing in two contrasting light treatments – open (about 20% of full sunlight) and shade (about 5% of full sunlight).
  • We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments.
  • Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) – leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area‐based rates of light‐saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade.
  • We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle‐leaved conifers in response to shade. However, an expectation of higher plasticity in shade‐intolerant species than in shade‐tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit.
  相似文献   

5.
Aims Relatively few studies so far have assessed how ongoing global warming will affect the photosynthetic performance of dryland plant species. We evaluated the effects of warming on the photosynthetic rates of 10 species with contrasting functional attributes, and whether their functional traits modulated photosynthetic responses to warming.Methods A common garden experiment was conducted over 2 years with distinct environmental conditions (drier vs. wetter year). The experiment was designed as a randomized block design with two treatments: warming (control vs. ~2.9°C temperature increase) and species (Agropyron cristatum, Festuca ovina, Lygeum spartum, Medicago sativa, Plantago lanceolata, Psoralea bituminosa, Sanguisorba minor, Hedysarum coronarium, Dorycnium pentaphyllum and Phlomis herba-venti). We linked functional traits measurements with temporal variations in photosynthetic responses to warming.Important findings In the drier year, warming increased photosynthetic rates at the beginning of the growing season, suggesting a modification in the growing period (earlier spring). In the wetter year, functional traits modulated photosynthetic responses to warming. Larger species with shorter leaves (e.g. M. sativa) had higher photosynthetic rates under warming compared to smaller species with larger leaves (e.g. F. ovina). Our results highlight the importance of (i) studying photosynthetic responses along different years and (ii) considering functional traits when evaluating photosynthetic responses to climate change, particularly in stressful environments such as drylands.  相似文献   

6.
Triacontanol applied to tomato plants as a foliar spray caused a significant increase in total yield and yield per plant. When triacontantol was added to the growth medium, only a temporary increase in yield and number of fruits was observed. The yield of maize was unaffected by triacontanol, either applied to the leaves or to the growth substrate. These results support an earlier observation that a reduction in photorespiration is involved in the regulatory function of triacontanol, since only the yield of tomato, a C3 plant, was increased. The application method was an important factor in it's effectiveness.  相似文献   

7.
The success of competitive interactions between plants determines the chance of survival of individuals and eventually of whole plant species. Shade-tolerant plants have adapted their photosynthesis to function optimally under low-light conditions. These plants are therefore capable of long-term survival under a canopy shade. In contrast, shade-avoiding plants adapt their growth to perceive maximum sunlight and therefore rapidly dominate gaps in a canopy. Daylight contains roughly equal proportions of red and far-red light, but within vegetation that ratio is lowered as a result of red absorption by photosynthetic pigments. This light quality change is perceived through the phytochrome system as an unambiguous signal of the proximity of neighbors resulting in a suite of developmental responses (termed the shade avoidance response) that, when successful, result in the overgrowth of those neighbors. Shoot elongation induced by low red/far-red light may confer high relative fitness in natural dense communities. However, since elongation is often achieved at the expense of leaf and root growth, shade avoidance may lead to reduction in crop plant productivity. Over the past decade, major progresses have been achieved in the understanding of the molecular basis of shade avoidance. However, uncovering the mechanisms underpinning plant response and adaptation to changes in the ratio of red to far-red light is key to design new strategies to precise modulate shade avoidance in time and space without impairing the overall crop ability to compete for light.  相似文献   

8.
The capacity of tomato leaf tissues to accumulate proline in response to a salt shock (150 mM NaCl) applied to excised shoots, leaves, leaflets or leaf discs was determined and compared to that of whole plants grown at the same salinity. The associated changes in free amino acids, Na+, K+ and Cl- contents were also investigated. In excised organs treated for 80 h, up to 200 mumol g-1 DW of proline were accumulated, whereas the amount of proline in leaf discs did not exceed a value ten-fold lower. In the whole plants subjected to salinity the Na+, Cl- and K+ contents remained low in comparison to that observed in excised organs. Proline and other amino acids increased more slowly in whole plants than in excised shoots. The contribution of roots and vascular tissues to the control of Na+ and Cl- accumulation and to the regulation of proline metabolism are discussed.  相似文献   

9.
Leaf water content is an important variable for understanding plant physiological properties. This study evaluates a spectral analysis approach, continuous wavelet analysis (CWA), for the spectroscopic estimation of leaf gravimetric water content (GWC, %) and determines robust spectral indicators of GWC across a wide range of plant species from different ecosystems. CWA is both applied to the Leaf Optical Properties Experiment (LOPEX) data set and a synthetic data set consisting of leaf reflectance spectra simulated using the leaf optical properties spectra (PROSPECT) model. The results for the two data sets, including wavelet feature selection and GWC prediction derived using those features, are compared to the results obtained from a previous study for leaf samples collected in the Republic of Panamá (PANAMA), to assess the predictive capabilities and robustness of CWA across species. Furthermore, predictive models of GWC using wavelet features derived from PROSPECT simulations are examined to assess their applicability to measured data. The two measured data sets (LOPEX and PANAMA) reveal five common wavelet feature regions that correlate well with leaf GWC. All three data sets display common wavelet features in three wavelength regions that span 1732-1736 nm at scale 4, 1874-1878 nm at scale 6, and 1338-1341 nm at scale 7 and produce accurate estimates of leaf GWC. This confirms the applicability of the wavelet-based methodology for estimating leaf GWC for leaves representative of various ecosystems. The PROSPECT-derived predictive models perform well on the LOPEX data set but are less successful on the PANAMA data set. The selection of high-scale and low-scale features emphasizes significant changes in both overall amplitude over broad spectral regions and local spectral shape over narrower regions in response to changes in leaf GWC. The wavelet-based spectral analysis tool adds a new dimension to the modeling of plant physiological properties with spectroscopy data.  相似文献   

10.
11.
刘芸 《生态学报》2007,27(7):2756-2764
生长在一个密集植物群中的植株由于相互遮蔽而不可能对风的影响做出反应,因为这样的环境条件(有限的光资源)对由风导致的矮小表型植株的生长是不利的。为弄清在密集植物群体中生长的植株对风的响应,利用藤本植物Potentilla reptans的10种基因型做实验材料,在温室条件下(光照强度为日光照的50%,红光/远红光=1.2)模拟冠层遮阴(相当于15%的日光照,红光/远红光=0.3),研究了藤本植物叶对风的响应。结果表明,Potentilla reptans的10种基因型植株在冠层遮阴下(低的红光/远红光)都表现出典型的避阴生长响应:较少的叶(叶生物量少),长而细但硬度系数高(higher Young's modulus)的叶柄;而受风影响的植株,无论遮阴或不遮阴,其植株的叶相对较多,叶柄短、粗且柔韧性强(lower Young's modulus),说明Potentilla reptans叶对风的响应并未因遮阴而被压抑,其可塑性变化不过是对复杂生境做出的一种生长权衡:尽可能增强抗风能力(矮壮)和获取最大光能(足够高而避免被遮光),即保证在存活下去的前提下获取最大的生长效率。  相似文献   

12.
叶片生物量和元素含量是显著影响叶片生理功能的两类重要的叶片经济性状, 且二者紧密相关。然而过去的研究多数关注C、N和P三种元素含量, 而对其他元素含量关注较少。维管附生植物不能直接从土壤中吸收养分而经常遭受养分胁迫, 养分含量与生物量之间的协同关系在这类植物中表现得尤为突出。选择维管附生石斛属植物为研究对象, 应用系统发育独立对比分析, 检测了叶片生物量和元素含量的系统发育保守性以及这些性状间的关联进化。结果表明, 叶片干物质含量、比叶重、C含量、N含量、P含量以及C/N具有较强的系统发育信号, 并且叶片干物质含量和比叶重与这四个元素含量性状间存在较强的关联进化。另外, 经系统发育校准后, Ca含量和Mg含量间存在显著正相关; P含量与Si含量间存在显著正相关; Zn含量与N含量、N/P以及Mn含量间存在显著正相关, 而与C/N间存在显著负相关。结果为探讨维管附生植物叶片生物量和元素含量的主要影响因素, 以及从进化角度探讨二者在植物进化适应过程中的生态协同功能提供案例, 对进一步了解维管附生植物的功能适应性具有重要意义。  相似文献   

13.
Plants of 25 wild Lycopersicon accessions were screened in the greenhouse for resistance to the whitefly-borne tomato yellow leaf curl virus (TYLCV). High levels of resistance were detected in 7 of 9 accessions of L. peruvianum and in all 5 accessions of L. chilense tested. In contrast, plants of 7 accessions of L. hirsutum and 3 of 4 accessions of L. pimpinellifolium were highly susceptible. Plants of accession CIAS 27 (L. pimpinellifolium) showed moderate resistance to TYLCV.  相似文献   

14.
15.
叶片的形态变异是研究植物响应气候变化的重要指标之一。叶片大小与形状影响着植物与外界环境的碳、水等物质交换和能量交换。然而,叶片大小与形状如何响应气候变化仍缺乏研究。此外,大多研究忽略了叶大小与形状在时间和空间上的种内变异,而只关注种间变异。我们收集了中国98年(1910-2008年)7个代表性双子叶植物的植物标本馆标本6000多份,并测量了它们叶片的叶长和宽度。我们探索了叶片大小(叶长、叶宽和长×宽乘积)的地理模式和时间趋势,(即研究了降水量和温度随时间和空间的变化对叶片大小和形状变化的影响。在控制了标本采集时间的影响后,全部物种的平均叶大小沿着纬度梯度的增加而减小,但这一关系在不同物种间存在差异。叶大小和形状的空间变异与温度和降水正相关。当控制了采集地点的影响后,全部物种的平均叶大小随着时间有变大的趋势。大多数物种叶大小的时间变化与降水正相关,而叶形状的时间变化则与温度正相关。我们的研究指出叶大小和形状在时空上的种内变异显著受气候的影响,同时说明植物标本可以为研究植物形态对气候变化的响应提供素材。  相似文献   

16.
Ozone (O3)-induced accelerated senescence of leaves was measured in four tree species: black cherry ( Prunus serotina ), hybrid poplar ( Populus maximowizii x trichocarpa , clone 245), northern red oak ( Quercus rubra ) and sugar maple ( Acer saccharum ). Seedlings or ramets of the four species were subjected to chronic O3 exposures and designated leaves harvested periodically from emergence to senescence. Gas exchange was analysed, and concentrations of total soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase were measured as indicators of leaf senescence. Total antioxidant potential and ascorbate peroxidase and glutathione reductase activities also were determined. Black cherry and hybrid poplar exhibited O3-induced accelerated leaf senescence, whereas sugar maple and northern red oak did not. When the O3 effects were related to cumulative uptake of the gas, black cherry was the most sensitive of the four species. Although hybrid poplar exhibited similar symptoms of O3-induced accelerated senescence after the same exposure period as did black cherry, this species took up much greater quantities of O3 to achieve the same response. The O3-induced increase in glutathione reductase activity in hybrid poplar was consistent with the capacity of this species to take up high concentrations of the gas. Relative tolerance of northern red oak and sugar maple could be explained only in part by lower cumulative O3 uptake and lower rate of uptake. Sugar maple had the highest antioxidant potential of all four species, which may have contributed to O3 tolerance of this species. Ascorbate peroxidase activity, when expressed on a fresh weight basis, could not account for differential sensitivity among the four species.  相似文献   

17.
18.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

19.
青藏高原东北部39种阔叶草本植物叶大小随海拔增加而减少种间或种内的叶大小随环境变化存在很大的差异,但这些差异如何随海拔变化一直都在争论。我们在青藏高原东北缘的冷龙岭和达坂山,沿海拔3200–4400 m的山坡上选取生长在开阔环境下的39种阔叶草本植物,观测了叶大小、叶长、叶宽和比叶重。研究结果表明,随海拔增加叶片显著减小,而且叶片面积的减小主要受叶片长度的影响,即随海拔增加叶长度减小明显。此外,叶片面积与海拔之间的关系随物种、叶倾角和叶表面特征而不同。利用局地环境观测数据驱动的能量平衡模型分析发现:叶温能更密切地追随气温变化,叶大小变化对叶温的影响在高海拔更为强烈。同时,基于上述能量平衡的计算结果,我们认为青藏高原东北部阔叶草本植物的海拔分布上限大约为5400 m。  相似文献   

20.
Understanding the scaling between leaf size and leafing intensity (leaf number per stem size) is crucial for comprehending theories about the leaf costs and benefits in the leaf size–twig size spectrum. However, the scaling scope of leaf size versus leafing intensity changes along the twig leaf size variation in different leaf habit species remains elusive. Here, we hypothesize that the numerical value of scaling exponent for leaf mass versus leafing intensity in twig is governed by the minimum leaf mass versus maximum leaf mass (M min versus M max) and constrained to be ≤−1.0. We tested this hypothesis by analyzing the twigs of 123 species datasets compiled in the subtropical mountain forest. The standardized major axis regression (SMA) analyses showed the M min scaled as the 1.19 power of M max and the ‐α (−1.19) were not statistically different from the exponents of M min versus leafing intensity in whole data. Across leaf habit groups, the M max scaled negatively and isometrically with respect to leafing intensity. The pooled data''s scaling exponents ranged from −1.14 to −0.96 for M min and M max versus the leafing intensity based on stem volume (LIV). In the case of M min and M max versus the leafing intensity based on stem mass (LIM), the scaling exponents ranged from −1.24 to −1.04. Our hypothesis successfully predicts that the scaling relationship between leaf mass and leafing intensity is constrained to be ≤−1.0. More importantly, the lower limit to scaling of leaf mass and leafing intensity may be closely correlated with M min versus M max. Besides, constrained by the maximum leaf mass expansion, the broad scope range between leaf size and number may be insensitive to leaf habit groups in subtropical mountain forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号